1
|
Marinetti A, Tessarolo F, Ventura L, Falzone A, Neri M, Piccoli F, Rigoni M, Masè M, Cortese F, Nollo G, Della Sala SW. Morphological MRI of knee cartilage: repeatability and reproducibility of damage evaluation and correlation with gross pathology examination. Eur Radiol 2020; 30:3226-3235. [PMID: 32055948 DOI: 10.1007/s00330-019-06627-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the performance of a morphological evaluation, based on a clinically relevant magnetic resonance imaging (MRI) protocol, in scoring the severity of knee cartilage damage. Specifically, to evaluate the reproducibility, repeatability, and agreement of MRI evaluation with the gross pathology examination (GPE) of the tissue. METHODS MRI of the knee was performed the day before surgery in 23 patients undergoing total knee arthroplasty. Osteochondral tissue resections were collected and chondral defects were scored by GPE according to a semi-quantitative scale. MR images were independently scored by four radiologists, who assessed the severity of chondral damage according to equivalent criteria. Inter- and intra-rater agreements of MRI evaluations were assessed. Correlation, precision, and accuracy metrics between MRI and GPE scores were calculated. RESULTS Moderate to substantial inter-rater agreement in scoring cartilage damage by MRI was found among radiologists. Intra-rater agreement was higher than 96%. A significant positive monotonic correlation between GPE and MRI scores was observed for all radiologists, although higher correlation values were obtained by radiologists with expertise in musculoskeletal radiology and/or longer experience. The accuracy of MRI scores displayed a spatial pattern, characterized by lesion overestimation in the lateral condyle and underestimation in the medial condyle with respect to GPE. CONCLUSIONS Evaluation of knee cartilage morphology by MRI is a reproducible and repeatable technique, which positively correlates with GPE. Clinical expertise in musculoskeletal radiology positively impacts the evaluation reliability. These findings may help to address limitations in MRI evaluation of knee chondral lesions, thus improving MRI assessment of knee cartilage. KEY POINTS • MRI evaluation of knee cartilage shows moderate to strong correlation with gross pathology examination. • MRI evaluation overestimates cartilage damage in the lateral condyle and underestimates it in the medial condyle. • Education and experience of the radiologist play a role in MRI evaluation of knee chondral lesions.
Collapse
Affiliation(s)
- Alessandro Marinetti
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, via delle Regole, 101, I-38123, Mattarello, Trento, Italy. .,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy.
| | - Luisa Ventura
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Andrea Falzone
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Marinella Neri
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Federico Piccoli
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Marta Rigoni
- Department of Industrial Engineering, University of Trento, via delle Regole, 101, I-38123, Mattarello, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Michela Masè
- Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Fabrizio Cortese
- Division of Orthopaedics and Traumatology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, via delle Regole, 101, I-38123, Mattarello, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Sabino Walter Della Sala
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| |
Collapse
|
2
|
Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage. Clin Rheumatol 2017; 36:2109-2119. [DOI: 10.1007/s10067-017-3645-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
3
|
Reisig G, Kreinest M, Richter W, Wagner-Ecker M, Dinter D, Attenberger U, Schneider-Wald B, Fickert S, Schwarz ML. Osteoarthritis in the Knee Joints of Göttingen Minipigs after Resection of the Anterior Cruciate Ligament? Missing Correlation of MRI, Gene and Protein Expression with Histological Scoring. PLoS One 2016; 11:e0165897. [PMID: 27820852 PMCID: PMC5098790 DOI: 10.1371/journal.pone.0165897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction The Göttingen Minipig (GM) is used as large animal model in articular cartilage research. The aim of the study was to introduce osteoarthritis (OA) in the GM by resecting the anterior cruciate ligament (ACLR) according to Pond and Nuki, verified by histological and magnetic resonance imaging (MRI) scoring as well as analysis of gene and protein expression. Materials and Methods The eight included skeletally mature female GM were assessed after ACLR in the left and a sham operation in the right knee, which served as control. 26 weeks after surgery the knee joints were scanned using a 3-Tesla high-field MR tomography unit with a 3 T CP Large Flex Coil. Standard proton-density weighted fat saturated sequences in coronal and sagittal direction with a slice thickness of 3 mm were used. The MRI scans were assessed by two radiologists according to a modified WORMS-score, the X-rays of the knee joints by two evaluators. Osteochondral plugs with a diameter of 4mm were taken for histological examination from either the main loading zone or the macroscopic most degenerated parts of the tibia plateau or condyle respectively. The histological sections were blinded and scored by three experts according to Little et al. Gene expression analysis was performed from surrounding cartilage. Expression of adamts4, adamts5, acan, col1A1, col2, il-1ß, mmp1, mmp3, mmp13, vegf was determined by qRT-PCR. Immunohistochemical staining (IH) of Col I and II was performed. IH was scored using a 4 point grading (0—no staining; 3-intense staining). Results and Discussion Similar signs of OA were evident both in ACLR and sham operated knee joints with the histological scoring result of the ACLR joints with 6.48 ± 5.67 points and the sham joints with 6.86 ± 5.84 points (p = 0.7953) The MRI scoring yielded 0.34 ± 0.89 points for the ACLR and 0.03 ± 0.17 for the sham knee joints. There was no correlation between the histological and MRI scores (r = 0.10021). The gene expression profiles as well as the immunohistochemical findings showed no significant differences between ACLR and sham knee joints. In conclusion, both knee joints showed histological signs of OA after 26 weeks irrespective of whether the ACL was resected or not. As MRI results did not match the histological findings, MRI was obviously unsuitable to diagnose the OA in GM. The analysis of the expression patterns of the 10 genes could not shed light on the question, whether sham operation also induced cartilage erosion or if the degeneration was spontaneous. The modified Pond-Nuki model may be used with reservation in the adult minipig to induce an isolated osteoarthritis.
Collapse
Affiliation(s)
- Gregor Reisig
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kreinest
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Mechthild Wagner-Ecker
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Dinter
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ulrike Attenberger
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Barbara Schneider-Wald
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fickert
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus L. Schwarz
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
4
|
Ashinsky BG, Coletta CE, Bouhrara M, Lukas VA, Boyle JM, Reiter DA, Neu CP, Goldberg IG, Spencer RG. Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging. Osteoarthritis Cartilage 2015; 23:1704-12. [PMID: 26067517 PMCID: PMC4577440 DOI: 10.1016/j.joca.2015.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study is to evaluate the ability of machine learning to discriminate between magnetic resonance images (MRI) of normal and pathological human articular cartilage obtained under standard clinical conditions. METHOD An approach to MRI classification of cartilage degradation is proposed using pattern recognition and multivariable regression in which image features from MRIs of histologically scored human articular cartilage plugs were computed using weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHRM). The WND-CHRM method was first applied to several clinically available MRI scan types to perform binary classification of normal and osteoarthritic osteochondral plugs based on the Osteoarthritis Research Society International (OARSI) histological system. In addition, the image features computed from WND-CHRM were used to develop a multiple linear least-squares regression model for classification and prediction of an OARSI score for each cartilage plug. RESULTS The binary classification of normal and osteoarthritic plugs yielded results of limited quality with accuracies between 36% and 70%. However, multiple linear least-squares regression successfully predicted OARSI scores and classified plugs with accuracies as high as 86%. The present results improve upon the previously-reported accuracy of classification using average MRI signal intensities and parameter values. CONCLUSION MRI features detected by WND-CHRM reflect cartilage degradation status as assessed by OARSI histologic grading. WND-CHRM is therefore of potential use in the clinical detection and grading of osteoarthritis.
Collapse
Affiliation(s)
- B G Ashinsky
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - C E Coletta
- Image Informatics and Computational Biology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - M Bouhrara
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - V A Lukas
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - J M Boyle
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - D A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - C P Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.
| | - I G Goldberg
- Image Informatics and Computational Biology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - R G Spencer
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
5
|
Lukas VA, Fishbein KW, Lin PC, Schär M, Schneider E, Neu CP, Spencer RG, Reiter DA. Classification of histologically scored human knee osteochondral plugs by quantitative analysis of magnetic resonance images at 3T. J Orthop Res 2015; 33:640-50. [PMID: 25641500 PMCID: PMC5875433 DOI: 10.1002/jor.22810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/10/2014] [Indexed: 02/04/2023]
Abstract
This work evaluates the ability of quantitative MRI to discriminate between normal and pathological human osteochondral plugs characterized by the Osteoarthritis Research Society International (OARSI) histological system. Normal and osteoarthritic human osteochondral plugs were scored using the OARSI histological system and imaged at 3 T using MRI sequences producing T1 and T2 contrast and measuring T1, T2, and T2* relaxation times, magnetization transfer, and diffusion. The classification accuracies of quantitative MRI parameters and corresponding weighted image intensities were evaluated. Classification models based on the Mahalanobis distance metric for each MRI measurement were trained and validated using leave-one-out cross-validation with plugs grouped according to OARSI histological grade and score. MRI measurements used for classification were performed using a region-of-interest analysis which included superficial, deep, and full-thickness cartilage. The best classifiers based on OARSI grade and score were T1- and T2-weighted image intensities, which yielded accuracies of 0.68 and 0.75, respectively. Classification accuracies using OARSI score-based group membership were generally higher when compared with grade-based group membership. MRI-based classification--either using quantitative MRI parameters or weighted image intensities--is able to detect early osteoarthritic tissue changes as classified by the OARSI histological system. These findings suggest the benefit of incorporating quantitative MRI acquisitions in a comprehensive clinical evaluation of OA.
Collapse
Affiliation(s)
- Vanessa A. Lukas
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 3001 S. Hanover Street, Baltimore, Maryland
| | - Kenneth W. Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 3001 S. Hanover Street, Baltimore, Maryland
| | - Ping-Chang Lin
- Department of Radiology, Howard University College of Medicine, Washington, District of Columbia
| | | | - Erika Schneider
- Imaging Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Corey P. Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 3001 S. Hanover Street, Baltimore, Maryland
| | - David A. Reiter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 3001 S. Hanover Street, Baltimore, Maryland
| |
Collapse
|
6
|
Boyde A, Davis GR, Mills D, Zikmund T, Cox TM, Adams VL, Niker A, Wilson PJ, Dillon JP, Ranganath LR, Jeffery N, Jarvis JC, Gallagher JA. On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis. J Anat 2014; 225:436-46. [PMID: 25132002 DOI: 10.1111/joa.12226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo.
Collapse
Affiliation(s)
- A Boyde
- Biophysics, Oral Growth and Development, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zilkens C, Miese F, Kim YJ, Jäger M, Mamisch TC, Hosalkar H, Antoch G, Krauspe R, Bittersohl B. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage. J Magn Reson Imaging 2013; 39:94-102. [DOI: 10.1002/jmri.24096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/05/2013] [Indexed: 11/11/2022] Open
Affiliation(s)
- Christoph Zilkens
- Univ Dusseldorf; Medical Faculty; Department of Orthopedic Surgery; D-40225 Dusseldorf Germany
| | - Falk Miese
- Univ Dusseldorf; Medical Faculty; Department of Diagnostic and Interventional Radiology; D-40225 Dusseldorf Germany
| | - Young-Jo Kim
- Department of Orthopedic Surgery; The Children's Hospital Boston; Boston Massachusetts USA
| | - Marcus Jäger
- Univ of Essen; Medical Faculty; Department of Orthopedic Surgery; D-40225 Essen Germany
| | - Tallal C. Mamisch
- Department of Orthopedic Surgery; The Children's Hospital Boston; Boston Massachusetts USA
| | - Harish Hosalkar
- Department of Orthopedic Surgery; Radys Childrens Hospital San Diego; USA
| | - Gerald Antoch
- Univ Dusseldorf; Medical Faculty; Department of Diagnostic and Interventional Radiology; D-40225 Dusseldorf Germany
| | - Rüdiger Krauspe
- Univ Dusseldorf; Medical Faculty; Department of Orthopedic Surgery; D-40225 Dusseldorf Germany
| | - Bernd Bittersohl
- Univ Dusseldorf; Medical Faculty; Department of Orthopedic Surgery; D-40225 Dusseldorf Germany
| |
Collapse
|
8
|
Zilkens C, Miese FR, Crumbiegel C, Kim YJ, Herten M, Antoch G, Krauspe R, Bittersohl B. Magnetic resonance imaging and histology of ovine hip joint cartilage in two age populations: a sheep model with assumed healthy cartilage. Skeletal Radiol 2013; 42:699-705. [PMID: 23275026 DOI: 10.1007/s00256-012-1554-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/08/2012] [Accepted: 11/18/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare morphologically normal appearing cartilage in two age groups with delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and correlate magnetic resonance imaging (MRI) findings with histology. MATERIALS AND METHODS Twenty femoral head specimens collected from ten lambs (group I) and ten young adult sheep (group II) underwent dGEMRIC and histological assessment. A region of 2 cm(2) with morphologically normal-appearing cartilage was marked with a surgical suture for subsequent matching of MRI and histological sections. The MRI protocol included a three-dimensional (3D) double-echo steady-state sequence for morphological cartilage assessment, a B1 pre-scan with various flip angles for B1 field heterogeneity correction, and 3D volumetric interpolated breathhold examination for T1(Gd) mapping (dGEMRIC). Histological analysis was performed according to the Mankin scoring system. RESULTS A total of 303 regions of interest (ROI; 101 MRI reformats matching 101 histological sections) was assessed. Twenty-six ROIs were excluded owing to morphologically apparent cartilage damage or insufficient MR image quality. Therefore, 277 ROIs were analyzed. Histological analyses revealed distinct degenerative changes in various cartilage samples of group II (young adult sheep). Corresponding T1(Gd) values were significantly lower in the group of sheep (mean T1(Gd) = 540.4 ms) compared with the group of lambs (mean T1(Gd) = 623.6 ms; p < 0.001). CONCLUSIONS Although morphologically normal, distinct cartilage degeneration may be present in young adult sheep cartilage. dGEMRIC can reveal these changes and may be a tool for the assessment of early cartilage degeneration.
Collapse
Affiliation(s)
- Christoph Zilkens
- Department of Orthopedic Surgery, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zilkens C, Miese F, Herten M, Kurzidem S, Jäger M, König D, Antoch G, Krauspe R, Bittersohl B. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: A histologically controlled study. Eur J Radiol 2013; 82:e81-6. [DOI: 10.1016/j.ejrad.2012.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/13/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
|
10
|
Moriya S, Miki Y, Matsuno Y, Okada M. Three-dimensional double-echo steady-state (3D-DESS) magnetic resonance imaging of the knee: establishment of flip angles for evaluation of cartilage at 1.5 T and 3.0 T. Acta Radiol 2012; 53:790-4. [PMID: 22850576 DOI: 10.1258/ar.2012.110532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The effect of flip angle (FA) on synovial fluid and cartilage signal and on image contrast using three-dimensional double-echo steady-state (3D-DESS) sequence have only been performed with 1.0-T but not with 1.5-T or 3.0-T scanners. PURPOSE To identify the FA that gives the maximum synovial fluid and cartilage values, and to identify the FA at which maximum values of synovial fluid-cartilage contrast-to-noise ratio (CNR) in 3D-DESS sequences when 1.5-T and 3.0-T scanners are used. MATERIAL AND METHODS Using 3D-DESS with water-excitation pulse, mid-sagittal plane images of the knees of 10 healthy volunteers (5 men, 5 women; age range, 21-42 years) were obtained with FA varying from 10° to 90°. Synovial fluid signals, cartilage signals, and background were measured at each FA, and the FA that gave the highest synovial fluid and cartilage values was obtained. Synovial fluid-cartilage CNR was also calculated, and the FA that gave the largest CNR was obtained. RESULTS At 1.5 T, the maximum synovial fluid signal was at FA 90°, and the maximum cartilage signal was at FA 30°. Synovial fluid-cartilage CNR was highest at FA 90° (P < 0.05). At 3.0 T, the maximum synovial fluid signal was at FA 90°, and the maximum cartilage signal was at FA 20°. Synovial fluid-cartilage CNR was highest at FA 90° (P < 0.05). CONCLUSION In order to improve the visibility of cartilage itself, FA settings of 30° at 1.5 T and 20° at 3.0 T are apparently ideal. For observing the cartilage surface, the most effective FA setting is 90° for both 1.5 T and 3.0 T.
Collapse
Affiliation(s)
- Susumu Moriya
- Ishikawa Clinic, Kyoto
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Yukio Miki
- Department of Radiology, Osaka City University Graduate School of Medicine, Osaka
| | | | | |
Collapse
|