2
|
Liu HT, Wang H, Wei WB, Liu H, Jiang L, Qin JH. A Microfluidic Strategy for Controllable Generation of Water-in-Water Droplets as Biocompatible Microcarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801095. [PMID: 30091845 DOI: 10.1002/smll.201801095] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/16/2018] [Indexed: 05/14/2023]
Abstract
Droplet microfluidics has been widely applied in functional microparticles fabricating, tissue engineering, and drug screening due to its high throughput and great controllability. However, most of the current droplet microfluidics are dependent on water-in-oil (W/O) systems, which involve organic reagents, thus limiting their broader biological applications. In this work, a new microfluidic strategy is described for controllable and high-throughput generation of monodispersed water-in-water (W/W) droplets. Solutions of polyethylene glycol and dextran are used as continuous and dispersed phases, respectively, without any organic reagents or surfactants. The size of W/W droplets can be precisely adjusted by changing the flow rate of dispersed and continuous phases and the valve switch cycle. In addition, uniform cell-laden microgels are fabricated by introducing the alginate component and rat pancreatic islet (β-TC6) cell suspension to the dispersed phase. The encapsulated islet cells retain high viability and the function of insulin secretion after cultivation for 7 days. The high-throughput droplet microfluidic system with high biocompatibility is stable, controllable, and flexible, which can boost various chemical and biological applications, such as bio-oriented microparticles synthesizing, microcarriers fabricating, tissue engineering, etc.
Collapse
Affiliation(s)
- Hai-Tao Liu
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Bo Wei
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Liu
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Jiang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian-Hua Qin
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
3
|
Ulas T, Tursun I, Dal MS, Demir ME, Kaya Z. A forgotten vasoconstrictive peptide in the pathogenesis of contrast induced nephropathy: Urotensin-II. Int J Cardiol 2013; 166:258. [DOI: 10.1016/j.ijcard.2012.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
|