1
|
Shi Q, Zhang X, Wu M, Xia Y, Pan Y, Weng J, Li N, Zan X, Xia J. Emulsifying Lipiodol with pH-sensitive DOX@HmA nanoparticles for hepatocellular carcinoma TACE treatment eliminate metastasis. Mater Today Bio 2023; 23:100873. [PMID: 38149018 PMCID: PMC10750100 DOI: 10.1016/j.mtbio.2023.100873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Lipiodol-based transcatheter arterial chemoembolization (TACE) is currently the predominant and first-line treatment option recommended by the global standard for unresectable hepatocellular carcinoma (HCC). However, the unstable emulsion of Lipiodol causes a substantial proportion of chemotherapy drugs to enter the circulation system, leading to poor accumulation in cancer tissues and unexpected side effects of chemotherapy drugs. Herein, we emulsified Lipiodol with a pH-sensitive drug delivery system assembled from hexahistidine and zinc ions (HmA) with a super-high loading capacity of doxorubicin (DOX) and a promising ability to penetrate bio-barriers for the effective treatment of HCC by TACE. In vitro tests showed that DOX@HmA was comparable to free DOX in killing HCC cells. Impressively, during the in vivo TACE treatment, the anti-tumor efficacy of DOX@HmA was significantly greater than that of free DOX, indicating that DOX@HmA increased the accumulation of DOX in tumor. Emulsifying Lipiodol with pH-sensitive DOX@HmA significantly inhibited cell regeneration and tumor angiogenesis and decreased the systemic side effects of chemotherapy, especially by suppressing pulmonary metastasis in liver VX2 tumors in rabbits by inhibiting epithelial-mesenchymal transition (EMT). Emulsifying tumor microenvironment-responsive drug delivery systems (DDSs) with Lipiodol could be a new strategy for clinical TACE chemotherapy with potentially enhanced HCC treatment.
Collapse
Affiliation(s)
- Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xingxing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Compus, Shanghai, 201499, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yating Pan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jialu Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Na Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
2
|
Zhang H, Guo Y, Jiao J, Qiu Y, Miao Y, He Y, Li Z, Xia C, Li L, Cai J, Xu K, Liu X, Zhang C, Bay BH, Song S, Yang Y, Peng M, Wang Y, Fan H. A hepatocyte-targeting nanoparticle for enhanced hepatobiliary magnetic resonance imaging. Nat Biomed Eng 2023; 7:221-235. [PMID: 36536254 DOI: 10.1038/s41551-022-00975-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
Hepatobiliary magnetic resonance imaging (MRI) can inform the diagnosis of liver tumours in patients with liver cirrhosis and hepatitis. However, its clinical utility has been hampered by the lack of sensitive and specific contrast agents, partly because hepatocyte-specific nanoparticles, regardless of their surface ligands, are readily sequestered by Kupffer cells. Here we show, in rabbits, pigs and macaques, that the performance of hepatobiliary MRI can be enhanced by an ultrasmall nanoparticle composed of a manganese ferrite core (3 nm in diameter) and poly(ethylene glycol)-ethoxy-benzyl surface ligands binding to hepatocyte-specific transmembrane metal and anion transporters. The nanoparticle facilitated faster, more sensitive and higher-resolution hepatobiliary MRI than the clinically used contrast agent gadoxetate disodium, a substantial enhancement in the detection rate (92% versus 48%) of early-stage liver tumours in rabbits, and a more accurate assessment of biliary obstruction in macaques. The nanoparticle's performance and biocompatibility support the further translational development of liver-specific MRI contrast agents.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Qiu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jing Cai
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ce Zhang
- College of Physics, Northwest University, Xi'an, Shaanxi, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shijie Song
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Song J, Lu Y, Wang X, Peng W, Lin W, Hou Z, Yan Z. A comparative study of four diffusion-weighted imaging models in the diagnosis of cervical cancer. Acta Radiol 2022; 63:536-544. [PMID: 33745294 DOI: 10.1177/02841851211002017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Most commonly used diffusion-weighted imaging (DWI) models include intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), stretched exponential model (SEM), and mono-exponential model (MEM). Previous studies of the four models were inconsistent on which model was more effective in distinguishing cervical cancer from normal cervical tissue. PURPOSE To assess the performance of four DWI models in characterizing cervical cancer and normal cervical tissue. MATERIAL AND METHODS Forty-seven women with suspected cervical carcinoma underwent DWI using eight b-values before treatment. Imaging parameters, calculated using IVIM, SEM, DKI, and MEM, were compared between cervical cancer and normal cervical tissue. The diagnostic performance of the models was evaluated using independent t-test, Mann-Whitney U test, receiver operating characteristic (ROC) curve analysis, and multivariate logistic regression analysis. RESULTS All parameters except pseudo-diffusion coefficient (D*) differed significantly between cervical cancer and normal cervical tissue (P < 0.001). Through logistic regression analysis, all combined models showed a significant improvement in area under the ROC curve (AUC) compared to individual DWI parameters. The model with combined IVIM parameters had a larger AUC value compared to those of other combined models (P < 0.05). CONCLUSION All four DWI models are useful for differentiating cervical cancer from normal cervical tissue and IVIM may be the optimal model.
Collapse
Affiliation(s)
- Jiao Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xue Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wenwen Peng
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wenxiao Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zujun Hou
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| |
Collapse
|
4
|
Huang D, Yang R, Zou Y, Lin H, Xu X, Wei X, Chang H, Wu L, Ding W, Tang W, Jiang X. Treatment Effect of a Vascular-Disrupting Agent Dynamically Monitored by DWI: An Animal Experimental Study. Can J Gastroenterol Hepatol 2021; 2021:2909189. [PMID: 35004528 PMCID: PMC8739180 DOI: 10.1155/2021/2909189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Objective To investigate the treatment effect of a vascular-disrupting agent, M410, using diffusion-weighted imaging in a rabbit model of hepatic VX2 tumor. Methods 28 New Zealand white rabbit models with VX2 liver tumors were established and were randomly divided into M410 (intravenous injection of M410 at a dose of 25 mg/kg every three days) and control (intravenous injection of saline every three days) groups. Conventional and diffusion-weighted imaging (DWI) were acquired on a 3.0 T MR unit at baseline, 4 h, d 1, d 4, d 7, and d 14 posttreatment. B-value with 700 (s/mm2) was chosen during DWI examinations. Tumor volume and apparent diffusion coefficient (ADC) values of the entire tumor and solid component of the tumor at every time point were measured. Two randomly chosen rabbits from each group were sacrificed for H&E staining and CD34 immunohistochemical assessments at each time point. An independent sample t-test was used to assess differences in tumor sizes and ADC values of the entire tumor and solid component of tumors between two groups, with P < 0.05 considered statistically significant. Result There was no significant difference in tumor volume between the two groups at baseline, 4 h, and d 1. With time, the tumors in the control group grew significantly faster than those in the M410 group, and the average ADC values of the M410 group were lower than those of the control group at d 1 and higher than those of the control group at d 4; as such, there were statistical differences between the two groups at these two time points but not at the other four time points. The following pathological results reflected the underlying morphological changes and vascular alterations. Conclusions M410 performed well in inhibiting the growth of the hepatic VX2 tumor which could be noninvasively monitored by DWI metrics.
Collapse
Affiliation(s)
- Danping Huang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yong Zou
- Guangzhou Institute of Chemistry, Chinese Academy of Science, 510650 Guangzhou, China
| | - Hongmei Lin
- Health Management Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Xiangdong Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinhua Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Hanzheng Chang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Liqiong Wu
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Wenshuang Ding
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Wenjie Tang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| |
Collapse
|
5
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
6
|
Power Doppler ultrasound and contrast-enhanced ultrasound demonstrate non-invasive tumour vascular response to anti-vascular therapy in canine cancer patients. Sci Rep 2019; 9:9262. [PMID: 31239493 PMCID: PMC6592898 DOI: 10.1038/s41598-019-45682-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Combretastatin A4-phosphate (CA4P) is an anti-vascular agent which selectively shuts down blood supply in tumours, resulting in extensive tumour necrosis. The aim of this study was to assess in vivo, non-invasive ultrasound techniques for the early evaluation of tumour perfusion following CA4P treatment of spontaneous tumours. Eight dogs that bore spontaneous tumours were enrolled and were subsequently treated with a single dose of intravenous CA4P. Perfusion of tumours was evaluated by power Doppler ultrasound (PDUS) pre-treatment (0 h), during the injection (10 min, 20 min, 30 min) and after CA4P infusion (24 and 72 h). Vascularity index (VI) of the tumour tissue was quantitatively analysed and accuracy was verified by correlation analysis with the results of immunohistochemical evaluation of microvessel density (MVD). Central and peripheral perfusion was evaluated by contrast-enhanced ultrasound (CEUS) pre-treatment and at 72 h post-treatment. Post-treatment, PDUS demonstrated a significant decrease in VI within 10 min of CA4P infusion. CEUS parameters demonstrated a significant decrease in blood velocity and volume in the central aspect of the tumour. Histology revealed a 4.4-fold reduction (p < 0.001, 95% CI [2.2,9.4]) in MVD and a 4.1-fold increase (p = 0.003, 95% CI [1.4,11.8]) in necrotic tumour tissue. A strong correlation between PDUS results and immunohistochemical results was found (Pearson R2 = 0.957, p < 0.001). Furthermore, the findings of PDUS were supported by the objective results of the CEUS analyses. These data suggest a role for ultrasound in real-time, non-invasive monitoring of tumour vascular response as an early indicator of CA4P treatment efficacy.
Collapse
|
7
|
Jin Q, Shan X, Luo Q, Zhang D, Zhao Y, Yao N, Peng F, Huang D, Yin Z, Liu W, Zhang J. 131I-Evans blue: evaluation of necrosis targeting property and preliminary assessment of the mechanism in animal models. Acta Pharm Sin B 2018; 8:390-400. [PMID: 29881678 PMCID: PMC5989829 DOI: 10.1016/j.apsb.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 01/28/2023] Open
Abstract
Necrosis is a form of cell death, which is related to various serious diseases such as cardiovascular disease, cancer, and neurodegeneration. Necrosis-avid agents (NAAs) selectively accumulated in the necrotic tissues can be used for imaging and/or therapy of related diseases. The aim of this study was to preliminarily investigate necrosis avidity of 131I-evans blue (131I-EB) and its mechanism. The biodistribution of 131I-EB at 24 h after intravenous administration showed that the radioactivity ratio of necrotic to viable tissue was 3.41 in the liver and 11.82 in the muscle as determined by γ counting in model rats. Autoradiography and histological staining displayed preferential uptake of 131I-EB in necrotic tissues. In vitro nuclear extracts from necrotic cells exhibited 82.3% of the uptake in nuclei at 15 min, as well as 79.2% of the uptake at 2 h after 131I-EB incubation. The DNA binding study demonstrated that evans blue (EB) has strong binding affinity with calf-thymus DNA (CT-DNA) (Ksv=5.08×105 L/(mol/L)). Furthermore, the accumulation of 131I-EB in necrotic muscle was efficiently blocked by an excess amount of unlabeled EB. In conclusion, 131I-EB can not only detect necrosis by binding the DNA released from necrotic cells, but also image necrotic tissues generated from the disease clinically.
Collapse
Key Words
- % ID/g, percentage of the injected dose per gram of tissue
- 131I-EB, 131I-evans blue
- 131I-Evans blue
- CE-T1WI, contrast-enhanced T1WI
- CT-DNA, calf-thymus DNA
- DMSO, dimethylsulfoxide
- DNA binding
- DWI, diffusion-weighted imaging
- EB, evans blue
- H&E, haematoxylin-eosin
- Hyp, hypericin
- MPS, mononuclear phagocyte system
- MRI, magnetic resonance imaging
- NAAs, necrosis-avid agents
- Necrosis avidity
- Necrosis imaging
- PI, propidium iodide
- RCP, radiochemical purity
- RFA, radiofrequency ablation
- RPLI, reperfused liver infarction
- Radioactivity
- SD rats, Sprague–Dawley rats
- T1WI, T1-weighted imaging
- T2WI, T2-weighted imaging
- TLC, thin layer chromatography
Collapse
|
8
|
Preclinical Evaluation of Radioiodinated Hoechst 33258 for Early Prediction of Tumor Response to Treatment of Vascular-Disrupting Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5237950. [PMID: 29681781 PMCID: PMC5846351 DOI: 10.1155/2018/5237950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the use of 131I-Hoechst 33258 (131I-H33258) for early prediction of tumor response to vascular-disrupting agents (VDAs) with combretastatin-A4 phosphate (CA4P) as a representative. Necrosis avidity of 131I-H33258 was evaluated in mouse models with muscle necrosis and blocking was used to confirm the tracer specificity. Therapy response was evaluated by 131I-H33258 SPECT/CT imaging 24 h after CA4P therapy in W256 tumor-bearing rats. Radiotracer uptake in tumors was validated ex vivo using γ-counting, autoradiography, and histopathological staining. Results showed that 131I-H33258 had predominant necrosis avidity and could specifically bind to necrotic tissue. SPECT/CT imaging demonstrated that an obvious “hot spot” could be observed in the CA4P-treated tumor. Ex vivo γ-counting revealed 131I-H33258 uptake in tumors was increased 2.8-fold in rats treated with CA4P relative to rats treated with vehicle. Autoradiography and corresponding H&E staining suggested that 131I-H33258 was mainly localized in necrotic tumor area and the higher overall uptake in the treated tumors was attributed to the increased necrosis. These results suggest that 131I-H33258 can be used to image induction of cell necrosis 24 h after CA4P therapy, which support further molecular design of probes based on scaffold H33258 for monitoring of tumor response to VDAs treatment.
Collapse
|
9
|
Shao H, Zhang J, Sun Z, Chen F, Dai X, Li Y, Ni Y, Xu K. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models. Oncotarget 2016; 6:14247-59. [PMID: 26036625 PMCID: PMC4546464 DOI: 10.18632/oncotarget.3679] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
A viable rim of tumor cells surrounding central necrosis always exists and leads to tumor recurrence after vascular disrupting treatment (VDT). A novel necrosis targeted radiotherapy (NTRT) using iodine-131-labeled hypericin (131I-Hyp) was specifically designed to treat viable tumor rim and improve tumor control after VDT in rabbit models of multifocal VX2 tumors. NTRT was administered 24 hours after VDT. Tumor growth was significantly slowed down by NTRT with a smaller tumor volume and a prolonged tumor doubling time (14.4 vs. 5.7 days), as followed by in vivo magnetic resonance imaging over 12 days. The viable tumor rims were well inhibited in NTRT group compared with single VDT control group, as showed on tumor cross sections at day 12 (1 vs. 3.7 in area). High targetability of 131I-Hyp to tumor necrosis was demonstrated by in vivo SPECT as high uptake in tumor regions lasting over 9 days with 4.26 to 98 times higher radioactivity for necrosis versus the viable tumor and other organs by gamma counting, and with ratios of 7.7-11.7 and 10.5-13.7 for necrosis over peri-tumor tissue by autoradiography and fluorescence microscopy, respectively. In conclusion, NTRT improved the anticancer efficacy of VDT in rabbits with VX2 tumors.
Collapse
Affiliation(s)
- Haibo Shao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Feng Chen
- Department of Imaging & Pathology, Theragnostic Laboratory, University of Leuven, Leuven, Belgium
| | - Xu Dai
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yaming Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yicheng Ni
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China.,Laboratory of Translational Medicine, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, China.,Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, China.,Department of Imaging & Pathology, Theragnostic Laboratory, University of Leuven, Leuven, Belgium
| | - Ke Xu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Li Y, Jiang C, Jiang X, Sun Z, Cona MM, Liu W, Zhang J, Ni Y. Biliary and duodenal drainage for reducing the radiotoxic risk of antineoplastic 131I-hypericin in rat models. Exp Biol Med (Maywood) 2015; 240:1764-73. [PMID: 25956680 DOI: 10.1177/1535370215584891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/07/2015] [Indexed: 01/28/2023] Open
Abstract
Necrosis targeting radiopharmaceutical (131)I-hypericin ((131)I-Hyp) has been studied for the therapy of solid malignancies. However, serious side effects may be caused by its unwanted radioactivity after being metabolized by the liver and excreted via bile in the digestive tract. Thus the aim of this study was to investigate two kinds of bile draining for reducing them. Thirty-eight normal rats were intravenously injected with (131)I-Hyp, 24 of which were subjected to the common bile duct (CBD) drainage for gamma counting of collected bile and tissues during 1-6, 7-12, 13-18, and 19-24 h (n = 6 each group), 12 of which were divided into two groups (n = 6 each group) for comparison of the drainage efficiency between CBD catheterization and duodenum intubation by collecting their bile at the first 4 h. Afterwards the 12 rats together with the last two rats which were not drained were scanned via single-photon emission computerized tomography/computed tomography (SPECT/CT) to check the differences. The images showed that almost no intestinal radioactivity can be found in those 12 drained rats while discernible radioactivity in the two undrained rats. The results also indicated that the most of the radioactivity was excreted from the bile within the first 12 h, accounting to 92% within 24 h. The radioactive metabolites in the small and large intestines peaked at 12 h and 18 h, respectively. No differences were found in those two ways of drainages. Thus bile drainage is highly recommended for the patients who were treated by (131)I-Hyp if human being and rats have a similar excretion pattern. This strategy can be clinically achieved by using a nasobiliary or nasoduodenal drainage catheter.
Collapse
Affiliation(s)
- Yue Li
- Lab of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, P.R. China
| | - Cuihua Jiang
- Lab of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, P.R. China
| | - Xiao Jiang
- PET/CT center, the Sichuan Cancer Hospital, 610048 Chengdu, P.R. China
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences, 250062 Jinan, P.R. China
| | | | - Wei Liu
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanjing Medical University, 210009 Nanjing, P.R. China
| | - Jian Zhang
- Lab of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, P.R. China
| | - Yicheng Ni
- Lab of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, P.R. China Radiation Medical Institute, Shandong Academy of Medical Sciences, 250062 Jinan, P.R. China Department of Radiology, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Chen PC, Lin DJ, Jao JC, Hsiao CC, Lin LM, Pan HB. The Impact of Flip Angle and TR on the Enhancement Ratio of Dynamic Gadobutrol-enhanced MR Imaging: In Vivo VX2 Tumor Model and Computer Simulation. Magn Reson Med Sci 2015; 14:193-202. [PMID: 25833269 DOI: 10.2463/mrms.2014-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used to diagnose cancer and monitor therapy. The maximum enhancement ratio (ERmax) obtained from the curve of signal intensity over time could be a biomarker to distinguish cancer from normal tissue or benign tumors. We evaluated the impact of flip angle (FA) and repetition time (TR) on the ERmax values of dynamic gadobutrol-enhanced MR imaging, obtaining T1-weighted (T1W) MR imaging of VX2 tumors using 2-dimensional fast spoiled gradient echo (2D FSPGR) with various FAs (30°, 60° and 90°) at 1.5 tesla before and after injection of 0.1 mmol/kg gadobutrol. In vivo study indicated significant differences between ERmax values and area under the ER-time curve (AUC100) of VX2 tumors and muscle tissue, with the highest ERmax and AUC100 at FA 90°. Computer simulation also demonstrated the ER as a strictly increasing monotonic function in the closed interval [0°, 90°] for a given TR when using T1W FSPGR, and the highest ER value always occurred at FA 90°. The FA for the highest ER differed from that for the highest signal-to-noise or contrast-to-noise ratio. For long TR, the ER value increases gradually. However, for short TR, the ER value increases rapidly and plateaus so that the ER value changes little beyond a certain FA value. Therefore, we suggest use of a higher FA, near 90°, to obtain a higher ERmax for long TR in 2D SPGR or FSPGR and a smaller FA, much less than 90°, to reach an appropriate ERmax for short TR in 3D SPGR or FSPGR. This information could be helpful in setting the optimal parameters for DCE-MRI.
Collapse
Affiliation(s)
- Po-Chou Chen
- Department of Biomedical Engineering, I-SHOU University
| | | | | | | | | | | |
Collapse
|
12
|
Kong M, Zhang J, Jiang C, Jiang X, Li Y, Gao M, Yao N, Huang D, Wang X, Fang Z, Liu W, Sun Z, Ni Y. Necrosis affinity evaluation of 131I-hypericin in a rat model of induced necrosis. J Drug Target 2013; 21:604-10. [PMID: 23627568 DOI: 10.3109/1061186x.2013.789034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancers are often with spontaneous or therapeutic necrosis that could be utilized as a generic target for developing new treatments. The purpose of this study was to investigate the biodistribution and pharmacokinetics of radioiodinated hypericin (Hyp), a naturally occurring compound, after intravenous (i.v.) injection in a rat model of liver and muscle necrosis (n = 42), and evaluate its necrosis affinity. Hyp was labeled with (131)I with labeling efficiency >99%. After incubating in solution/rat plasma for 8 days, radiochemical purity of (131)I-Hyp remained 98.1 and 97.1%, respectively, indicating good in vitro stability. SPECT-CT images at 24 h after i.v. injection of (131)I-Hyp in rats with induced liver and muscle necrosis showed obvious tracer absorption in necrotic tissues. Biodistribution studies revealed that the percentage of the injected dose per gram of tissue (%ID/g) evolved from 1.9 %ID/g at 6 h, through a maximum 3.0 %ID/g at 12 h, to 1.0 %ID/g at 192 h in necrotic liver. Pharmacokinetics studies revealed that the terminal elimination half-life, total body clearance and area under the curve of (131)I-Hyp were 32.7 h, 9.2 L/h/kg and 1.6 MBq/L*h, respectively. These results demonstrated that (131)I-Hyp features a long blood circulation in animals and persistent retention in necrotic tissues. Therefore, (131)I-labeled Hyp could be a broad-spectrum anti-tumor agent with a cost much cheaper relative to the biological agents such as monoclonal antibodies.
Collapse
Affiliation(s)
- Ming Kong
- Lab of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen PC, Jao JC, Lin DJ, Hsiao CC, Pan HB. Effect of gadobutrol on VX2 magnetic resonance diffusion-weighted imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:384-387. [PMID: 23365910 DOI: 10.1109/embc.2012.6345949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this study was to evaluate the effect of contrast agent gadobutrol on the magnetic resonance diffusion-weighted imaging (MR DWI). Gadobutrol has higher relaxivity than Gd-DTPA and it also has higher formulation 1.0 M than Gd-DTPA 0.5 M. VX2 tumor implanted on the left thigh of each New Zealand rabbit was used as the animal model. The MR scanning was performed using a 1.5 T clinical whole-body MR scanner with an 8-channel knee coil. The results showed that there were significant differences in the signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) values between tumor and muscle both before and after gadobutrol injection (0.1 mmol/kg). However, there were no significant differences in the SNR and ADC values of tumor or muscle before and after gadobutol administration. There were also no significant difference in the contrast-to-noise ratio (CNR) values of tumor and muscle before and after gadobutrol injection.
Collapse
Affiliation(s)
- P-C Chen
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung 824, Taiwan, ROC.
| | | | | | | | | |
Collapse
|