1
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Meng XF, Lin QY, Yin H, Li ZQ. Hyperpolarized 3 helium MRI measured apparent diffusion coefficient and its correlations with pulmonary functions tests in patients with chronic obstructive pulmonary disease: A meta-analysis. THE CLINICAL RESPIRATORY JOURNAL 2021; 15:1185-1193. [PMID: 34288505 DOI: 10.1111/crj.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND This study evaluates role of hyperpolarized 3 helium (3 He) MRI measured apparent diffusion coefficient (ADC) in examining pulmonary function of chronic obstructive pulmonary disease (COPD) patients. METHODS After literature search in electronic databases, studies were selected by following precise eligibility criteria. Meta-analyses were performed to estimate mean difference in ADC between COPD patients and healthy individuals and to seek correlations between lung ADC and pulmonary function. Metaregression analyses were performed to seek relationships between ADC and age, gender, BMI, cigarette pack-years, and pulmonary function tests. RESULTS Twenty-five studies (622 COPD patients and 469 healthy controls) were included. Lung ADC was 0.402 (95% confidence interval [CI]: 0.374, 0.429) in COPD patients and 0.228 (95% CI: 0.205, 0.252) in healthy individuals (mean difference 0.160 [95% CI: 0.127, 0.193]; p < 0.001). In metaregression, age (coefficient: 0.006; p = 0.004), pack-years (coefficient: 0.005; p = 0.018), forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio (coefficient: -1.815; p = 0.007), percent predicted diffusion capacity of carbon monoxide (DLCO) (coefficient: -0.004; p = 0.008), and percent predicted inspiratory capacity (coefficient: -0.004; p = 0.012) were significantly associated with ADC in COPD patients. In meta-analysis of correlation coefficients, ADC was significantly correlated with FEV1 (r = -0.62; p < 0.00001), FEV1/FVC (r = -0.80; p < 0.00001), DLCO (r = -0.85; p < 0.00001), functional residual capacity (r = 0.71; p < 0.00001), reserve volume (r = 0.53; p = 0.0001), and emphysema index (r = 0.89; p < 0.00001). CONCLUSION Hyperpolarized 3 He MRI measured ADC was higher in COPD patients than in healthy individuals and was inversely associated with FEV1, FEV1/FVC, DLCO, and inspiratory capacity.
Collapse
Affiliation(s)
- Xian-Feng Meng
- Department of Medical Imaging, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Qing-Yan Lin
- Department of Respiratory and Critical Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Honglei Yin
- Department of Respiratory and Critical Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zeng-Qi Li
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Thiboutot J, Yuan W, Park HC, Lerner AD, Mitzner W, Yarmus LB, Li X, Brown RH. Current Advances in COPD Imaging. Acad Radiol 2019; 26:335-343. [PMID: 30093217 PMCID: PMC11247962 DOI: 10.1016/j.acra.2018.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To review the recent advances in available technologies for imaging COPD and present the novel optical coherence tomography (OCT) airway imaging technology. MATERIALS AND METHODS This is an unstructured review of published evidence of available pulmonary imaging technologies along with a demonstration of state-of-the-art OCT imaging technology of in vivo human and animal airways. RESULTS Advanced imaging techniques such as Magnetic Resonance (MR) imaging using hyperoloarized noble gases, micro-Computed Tomography (micro-CT), and OCT aim to further our understanding of COPD. Lung densitometry can aid in identifying an exacerbation prone phenotype which may have implications for targeting specific therapies to these individuals. MR ventilation scans have the ability to provide a functional and regional distribution of airflow obstruction offering insight into the airway and parenchymal changes induced by COPD. Micro-CT gives a near microscopic view of the terminal bronchioles and alveoli permitting study of the microarchitecture of the lung ex vivo. Optical coherence tomography can visualize the microstructure of the airway walls (epithelium, smooth muscle, blood vessels, cartilage) permitting real time in vivo as well as longitudinal evaluation of airway changes in patients with COPD. CONCLUSION Advanced imaging techniques play a vital role in expanding our current understanding of COPD.
Collapse
Affiliation(s)
- Jeffrey Thiboutot
- Johns Hopkins University, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD 21205.
| | - Wu Yuan
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
| | - Hyeon-Cheol Park
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
| | - Andrew D Lerner
- Johns Hopkins University, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD 21205
| | - Wayne Mitzner
- Johns Hopkins University, Department of Environmental Health and Engineering, Baltimore, Maryland
| | - Lonny B Yarmus
- Johns Hopkins University, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD 21205
| | - Xingde Li
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
| | - Robert H Brown
- Johns Hopkins University, Department of Anesthesiology and Critical Care Medicine, Medicine, Department of Medicine, Division of Pulmonary Medicine, Department of Environmental Health and Engineering, and Department of Radiology, Baltimore, Maryland
| |
Collapse
|
4
|
Doganay O, Matin TN, Mcintyre A, Burns B, Schulte RF, Gleeson FV, Bulte D. Fast dynamic ventilation MRI of hyperpolarized 129 Xe using spiral imaging. Magn Reson Med 2017; 79:2597-2606. [PMID: 28921655 PMCID: PMC5836876 DOI: 10.1002/mrm.26912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Purpose To develop and optimize a rapid dynamic hyperpolarized 129Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal‐time curves in human lungs. Theory and Methods Spiral k‐space trajectories were designed with the number of interleaves Nint = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas‐flow phantom to investigate the ability of Nint = 1, 2, 4, and 8 to capture signal‐time curves. A finite element model was constructed to investigate gas‐flow dynamics corroborating the experimental signal‐time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). Results DXeV images and numerical modelling of signal‐time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two‐interleaved spiral (Nint = 2) was found to be the most time‐efficient to obtain DXeV images and signal‐time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal‐time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P < 0.05). Conclusion The Nint = 2 spiral demonstrates the successful acquisition of DXeV images and signal‐time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597–2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Ozkan Doganay
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Tahreema N Matin
- Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Anthony Mcintyre
- Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Brian Burns
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | | | - Fergus V Gleeson
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Daniel Bulte
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| |
Collapse
|
5
|
Zhong J, Ruan W, Han Y, Sun X, Ye C, Zhou X. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold. Sci Rep 2016; 6:25854. [PMID: 27169670 PMCID: PMC4864326 DOI: 10.1038/srep25854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023] Open
Abstract
MRI of hyperpolarized media, such as (129)Xe and (3)He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media.
Collapse
Affiliation(s)
- Jianping Zhong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Miller GW, Mugler JP, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR IN BIOMEDICINE 2014; 27:1542-56. [PMID: 24990096 PMCID: PMC4515033 DOI: 10.1002/nbm.3156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 05/05/2023]
Abstract
The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.
Collapse
Affiliation(s)
- G. Wilson Miller
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
- Address correspondence to: Wilson Miller, Radiology Research, 480 Ray C. Hunt Dr., Box 801339, Charlottesville, VA 22908, Phone: 434-243-9216, Fax: 434-924-9435,
| | - John P. Mugler
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
| | - Rui C. Sá
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
| | - Talissa A. Altes
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
| | - G. Kim Prisk
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| | - Susan R. Hopkins
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| |
Collapse
|
7
|
Liu Z, Araki T, Okajima Y, Albert M, Hatabu H. Pulmonary hyperpolarized noble gas MRI: Recent advances and perspectives in clinical application. Eur J Radiol 2014; 83:1282-1291. [DOI: 10.1016/j.ejrad.2014.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/21/2014] [Accepted: 04/19/2014] [Indexed: 12/01/2022]
|