1
|
Paulini I. 35 Jahre im Dienste des Strahlenschutzes: Verantwortung, Fortschritt, Innovation. Z Med Phys 2024; 34:485-489. [PMID: 39419739 PMCID: PMC11624360 DOI: 10.1016/j.zemedi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Inge Paulini
- Präsidentin des Bundesamtes für Strahlenschutz (BfS), Salzgitter, Germany.
| |
Collapse
|
2
|
Zewde N, Ria F, Rehani MM. Organ doses and cancer risk assessment in patients exposed to high doses from recurrent CT exams. Eur J Radiol 2022; 149:110224. [PMID: 35217250 PMCID: PMC11931570 DOI: 10.1016/j.ejrad.2022.110224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To estimate cumulative organ doses and age- and gender-stratified cancer mortality risks in patients undergoing recurrent computed tomography (CT) exams. METHODS Cohorts of patients who received cumulative effective dose ≥ 100 mSv were stratified into age and gender groups. Organ doses of 27 organs using Monte Carlo methods were available, and the relative risk model from the Biological Effects of Ionizing Radiation VII (BEIR VII) was used to estimate lifetime attributable cancer mortality risks (LACMR). RESULTS Out of the 8956 patients, 6.7% were 16-44 years of age, with median organ doses higher than 200 mGy for stomach and liver, whereas organ doses for nine organs, which included lungs, breasts, colon, red bone marrow, urinary bladder, esophagus, testicles, ovaries, and skin were between 100 and 200 mGy. Thyroid and salivary glands had smaller doses in the range of 45-69 mGy, but the mean dose for each organ was over 100 mGy. The age- and gender-specific median LACMR for the 16-44-years cohort was 0.6 to 0.7 deaths per 100 individuals for males, and 0.8 for females. The mortality estimated figures were highest for patients 16-54 years with slightly lower values for older age groups. Except for the highest age bracket of 75-84 years, the LACMR values for 55-74 years are not lower by orders of magnitude, and thus one cannot ignore risks in this age group. CONCLUSIONS Organ doses over 100 mGy for most organs and for some organs ≥ 200 mGy with unignorable associated lifetime attributable cancer mortality rates were found.
Collapse
Affiliation(s)
| | - Francesco Ria
- Carl E. Ravin Advanced Imaging Labs and Clinical Imaging Physics Group, Duke University Health System, Durham, NC 27710, USA
| | | |
Collapse
|
3
|
Gawlitza J, Henzler T, Trinkmann F, Nekolla E, Haubenreisser H, Brix G. COPD Imaging on a 3rd Generation Dual-Source CT: Acquisition of Paired Inspiratory-Expiratory Chest Scans at an Overall Reduced Radiation Risk. Diagnostics (Basel) 2020; 10:E1106. [PMID: 33352939 PMCID: PMC7765937 DOI: 10.3390/diagnostics10121106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
As stated by the Fleischner Society, an additional computed tomography (CT) scan in expiration is beneficial in patients with chronic obstructive pulmonary disease (COPD). It was thus the aim of this study to evaluate the radiation risk of a state-of-the-art paired inspiratory-expiratory chest scan compared to inspiration-only examinations. Radiation doses to 28 organs were determined for 824 COPD patients undergoing routine chest examinations at three different CT systems-a conventional multi-slice CT (MSCT), a 2nd generation (2nd-DSCT), and 3rd generation dual-source CT (3rd-DSCT). Patients examined at the 3rd-DSCT received a paired inspiratory-expiratory scan. Organ doses, effective doses, and lifetime attributable cancer risks (LAR) were calculated. All organ and effective doses were significantly lower for the paired inspiratory-expiratory protocol (effective doses: 4.3 ± 1.5 mSv (MSCT), 3.0 ± 1.2 mSv (2nd-DSCT), and 2.0 ± 0.8 mSv (3rd-DSCT)). Accordingly, LAR was lowest for the paired protocol with an estimate of 0.025 % and 0.013% for female and male patients (50 years) respectively. Image quality was not compromised. Paired inspiratory-expiratory scans can be acquired on 3rd-DSCT systems at substantially lower dose and risk levels when compared to inspiration-only scans at conventional CT systems, offering promising prospects for improved COPD diagnosis.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, 68159 Mannheim, Germany;
| | - Frederik Trinkmann
- Pulmonology and Critical Care Medicine, Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69115 Heidelberg, Germany;
- Department of Biomedical Informatics of the Heinrich-Lanz-Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 69115 Heidelberg, Germany
| | - Elke Nekolla
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, 91465 Neuherberg, Germany; (E.N.); (G.B.)
| | | | - Gunnar Brix
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, 91465 Neuherberg, Germany; (E.N.); (G.B.)
| |
Collapse
|
4
|
Nekolla EA, Schegerer AA, Griebel J, Brix G. [Frequency and doses of diagnostic and interventional X‑ray applications : Trends between 2007 and 2014]. Radiologe 2018; 57:555-562. [PMID: 28361179 DOI: 10.1007/s00117-017-0242-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND In Germany, approximately 95% of man-made radiation exposure of the population results from diagnostic and interventional X‑ray procedures. Thus, radiation protection of patients in this field of application is of great importance. OBJECTIVE Quantification and evaluation of current data on the frequency and doses of X‑ray procedures as well as temporal trends for the years 2007-2014. MATERIAL AND METHODS For outpatients the frequency of X‑ray procedures was estimated using reimbursement data from health insurances and for inpatients by means of hospital statistics. For the years under review, representative values for the effective dose per X‑ray application were determined mainly from data reported by X‑ray departments to the competent authorities. RESULTS In 2014 approximately 140 million X‑ray procedures were performed in Germany with some 40% from dental examinations. On average 1.7 procedures per inhabitant and year were almost constantly carried out between 2007 and 2014. Besides dental diagnostics, X‑ray examinations of the skeleton and thorax were performed most frequently. The number of computed tomography (CT) examinations increased by approximately 40%. The increase in magnetic resonance imaging (MRI) was even more pronounced with approximately 55% but overall CT examinations were still performed more often than MRI. The doses per X‑ray procedure were only slightly reduced, despite the various dose reduction approaches established in recent years; therefore, the mean effective dose per inhabitant increased from approximately 1.4 mSv in 2007 to 1.6 mSv in 2014, mainly due to the increasing frequency of CT examinations. CONCLUSION The principles of justification and optimization of radiological procedures are to be consistently applied in each individual instance, especially in the case of CT examinations.
Collapse
Affiliation(s)
- E A Nekolla
- BfS - Bundesamt für Strahlenschutz, Abteilung Medizinischer und Beruflicher Strahlenschutz, Ingolstädter Landstr. 1, 85764, Neuherberg, Deutschland.
| | | | | | | |
Collapse
|
5
|
Cumulative radiation exposure from imaging procedures and associated lifetime cancer risk for patients with lymphoma. Sci Rep 2016; 6:35181. [PMID: 27748377 PMCID: PMC5066222 DOI: 10.1038/srep35181] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to systematically evaluate the cumulative radiation exposure and the associated lifetime-cancer-risk from diagnostic imaging in patients with Hodgkin-lymphoma-(HL) or diffuse-large-B-cell-lymphoma (DLBCL). 99 consecutive patients (53-males) diagnosed with HL or DLBCL were included in the study and followed. Based on the imaging reports, organ and effective-doses-(ED) were calculated individually for each patient and the excess lifetime risks were estimated. The average ED in the first year after diagnosis was significantly different for men (59 ± 33 mSv) and women (744 ± 33 mSv)-(p < 0.05). The mean cumulative ED in each of the following 5 years was 16 ± 16 mSv without significant differences between men and women-(p > 0.05). Over all years, more than 90% of the ED resulted from CT. The average cumulative radiation risk estimated for the first year was significantly lower for men (0.76 ± 0.41%) as compared to women (1.28 ± 0.54%)-(p < 0.05). The same was found for each of the subsequent 5-years (men-0.18 ± 0.17%; women-0.28 ± 0.25%)-(p < 0.05). In conclusion, for HL and DLBCL patients investigated in this study, a cumulative radiation risk of about 1 excess cancer per 100 patients is estimated for diagnostic imaging procedures performed during both the first year after diagnosis and a follow-up period of 5 years.
Collapse
|
6
|
Yang J, Wang N, Tong X, Ye X, Zhou L, Tong G, Shen Y, Lv S. Impact of guidewire selection and operator expertise on radiation exposure in transradial angiography. J Cardiothorac Surg 2014; 9:194. [PMID: 25477256 PMCID: PMC4265418 DOI: 10.1186/s13019-014-0194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 11/17/2022] Open
Abstract
Background Several studies have implied that the time of radiation exposure for patients and operators during the transradial approach for coronary angiography (TRA) is associated with the use of different guidewire or catheter and operator’s finesse. This study aimed to assess the effects of non-hydrophilic or hydrophilic guidewire and operator expertise on fluoroscopy time and procedure time of TRA and further effects on the procedure safety. Methods A total of 1035 consecutive patients undergoing TRA were recruited prospectively and respectively divided into non-hydrophilic guidewire and hydrophilic guidewire group, or well-experienced group and less-experienced group. The primary endpoints were fluoroscopy time and procedure time. Secondary endpoints included contrast volume, cost, guidewire exchange, switchover and complications. Results TRA by non-hydrophilic guidewire group showed shorter fluoroscopy time and procedure time compared with hydrophilic guidewire group, similar results were found between well-experienced group and less-experienced group. Moreover, using of non-hydrophilic guidewire significantly reduced the incidence of hematoma and abnormal guidewie advancement, well-experienced group showed less dosage of contrast volume, lower incidence of radial artery spasm and frequency of guidewire exchange. Conclusions TRA by non-hydrophilic guidewire and well-experienced operator can decrease radiation exposure of patients and operators through reducing the fluoroscopy time and procedure time and further increase procedure safety. These will contribute to the optimization of TRA procedure and promote its widely application. Electronic supplementary material The online version of this article (doi:10.1186/s13019-014-0194-5) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Brix G, Lechel U, Nekolla E, Griebel J, Becker C. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography. Eur J Radiol 2014; 84:2347-58. [PMID: 25480677 DOI: 10.1016/j.ejrad.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022]
Abstract
Dynamic contrast-enhanced (DCE) CT studies are increasingly used in both medical care and clinical trials to improve diagnosis and therapy management of the most common life-threatening diseases: stroke, coronary artery disease and cancer. It is thus the aim of this review to briefly summarize the current knowledge on deterministic and stochastic radiation effects relevant for patient protection, to present the essential concepts for determining radiation doses and risks associated with DCE-CT studies as well as representative results, and to discuss relevant aspects to be considered in the process of justification and optimization of these studies. For three default DCE-CT protocols implemented at a latest-generation CT system for cerebral, myocardial and cancer perfusion imaging, absorbed doses were measured by thermoluminescent dosimeters at an anthropomorphic body phantom and compared with thresholds for harmful (deterministic) tissue reactions. To characterize stochastic radiation risks of patients from these studies, life-time attributable cancer risks (LAR) were estimated using sex-, age-, and organ-specific risk models based on the hypothesis of a linear non-threshold dose-response relationship. For the brain, heart and pelvic cancer studies considered, local absorbed doses in the imaging field were about 100-190 mGy (total CTDI(vol), 200 mGy), 15-30 mGy (16 mGy) and 80-270 mGy (140 mGy), respectively. According to a recent publication of the International Commission on Radiological Protection (ICRP Publication 118, 2012), harmful tissue reactions of the cerebro- and cardiovascular systems as well as of the lenses of the eye become increasingly important at radiation doses of more than 0.5 Gy. The LARs estimated for the investigated cerebral and myocardial DCE-CT scenarios are less than 0.07% for males and 0.1% for females at an age of exposure of 40 years. For the considered tumor location and protocol, the corresponding LARs are more than 6 times as high. Stochastic radiation risks decrease substantially with age and are markedly higher for females than for males. To balance the diagnostic needs and patient protection, DCE-CT studies have to be strictly justified and carefully optimized in due consideration of the various aspects discussed in some detail in this review.
Collapse
Affiliation(s)
- Gunnar Brix
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Oberschleissheim, Germany.
| | - Ursula Lechel
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Oberschleissheim, Germany.
| | - Elke Nekolla
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Oberschleissheim, Germany.
| | - Jürgen Griebel
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Oberschleissheim, Germany.
| | - Christoph Becker
- Department of Clinical Radiology, Grosshadern Clinic, Hospital of the Ludwig-Maximilians University, Marchioninistraße 15, D-81377 Munich, Germany.
| |
Collapse
|
8
|
Radiation risk and protection of patients in clinical SPECT/CT. Eur J Nucl Med Mol Imaging 2013; 41 Suppl 1:S125-36. [PMID: 24052089 DOI: 10.1007/s00259-013-2543-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Clinical studies have demonstrated that hybrid single photon emission computed tomography (SPECT)/CT for various diagnostic issues has an added value as compared to SPECT alone. However, the combined acquisition of functional and anatomical images can substantially increase radiation exposure to patients, in particular when using a hybrid system with diagnostic CT capabilities. It is, therefore, essential to carefully balance the diagnostic needs and radiation protection requirements. To this end, the evidence on health effects induced by ionizing radiation is outlined. In addition, the essential concepts for estimating radiation doses and lifetime attributable cancer risks associated with SPECT/CT examinations are presented taking into account both the new recommendations of the International Commission on Radiological Protection (ICRP) as well as the most recent radiation risk models. Representative values of effective dose and lifetime attributable risk are reported for ten frequently used SPECT radiopharmaceuticals and five fully diagnostic partial-body CT examinations. A diagnostic CT scan acquired as part of a combined SPECT/CT examination contributes considerably to, and for some applications even dominates, the total patient exposure. For the common SPECT and CT examinations considered in this study, the lifetime attributable risk of developing a radiation-related cancer is less than 0.27 %/0.37 % for men/women older than 16 years, respectively, and decreases markedly with increasing age at exposure. Since there is no clinical indication for a SPECT/CT examination unless an emission scan has been indicated, the issue on justification comes down to the question of whether it is necessary to additionally acquire a low-dose CT for attenuation correction and anatomical localization of tracer uptake or even a fully diagnostic CT. In any case, SPECT/CT studies have to be optimized, e.g. by adapting dose reduction measures from state-of-the-art CT practice, and exposure levels should not exceed the national diagnostic reference levels for standard situations.
Collapse
|