1
|
Cho N, Al-Shawwa A, Jacobs WB, Evaniew N, Bouchard J, Casha S, duPlessis S, Lewkonia P, Nicholls F, Soroceanu A, Swamy G, Thomas KC, Yang MMH, Cohen-Adad J, Cadotte DW. Spinal Cord Tract Integrity in Degenerative Cervical Myelopathy. Neurosurgery 2025:00006123-990000000-01557. [PMID: 40179008 DOI: 10.1227/neu.0000000000003428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Degenerative cervical myelopathy (DCM) is the most common cause of spinal dysfunction globally. Despite surgical intervention, motor dysfunction may persist in many patients. The purpose of this study was to comprehensively examine specific spinal cord tract changes in patients with DCM, to better understand potential substrates for compensatory recovery of function. METHODS Cervical spinal cord MRI scans with diffusion tensor imaging were performed in patients with DCM and in healthy volunteers. Spinal Cord Toolbox was used to register the PAM50 template, which includes a probabilistic atlas of the white matter tracts of the spinal cord, to the imaging data. Fractional anisotropy (FA) was extracted for each tract at C3 above the level of maximal compression and compared between patients with DCM and healthy volunteers and between patients with mild vs moderate to severe DCM. RESULTS We included 25 patients with DCM (13 mild and 12 moderate to severe) and 6 healthy volunteers. FA was significantly reduced in DCM subjects relative to healthy volunteers for the lateral corticospinal tract (mild DCM vs healthy ∆ = -0.13, P = .018; moderate to severe DCM vs healthy ∆ = -0.11, P = .047), fasciculus gracilis (mild DCM vs healthy ∆ = -0.16, P = .010; moderate to severe DCM vs healthy ∆ = -0.13, P = .039), and fasciculus cuneatus (mild DCM vs healthy ∆ = -0.16, P = .007; moderate to severe DCM vs healthy ∆ = -0.15, P = .012). There were no differences in FA for all tracts between mild and moderate-to-severe DCM subjects. CONCLUSION Patients with DCM had altered diffusion tensor imaging signal in their lateral corticospinal tract, fasciculus gracilis, and fasciculus cuneatus in comparison with healthy volunteers. These findings indicate that DCM is characterized by injury to these structures, which suggests that other tracts within the cord could potentially act as substrates for compensatory motor recovery.
Collapse
Affiliation(s)
- Newton Cho
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
| | - Abdul Al-Shawwa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - W Bradley Jacobs
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nathan Evaniew
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Jacques Bouchard
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Steve Casha
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephan duPlessis
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter Lewkonia
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Fred Nicholls
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Alex Soroceanu
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Ganesh Swamy
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Kenneth C Thomas
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Michael M H Yang
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
| | - David W Cadotte
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Atchut KA, Shetty L, Ravichandran K. Role of diffusion tensor imaging in stenotic and non-stenotic spinal canal. J Med Imaging Radiat Sci 2023; 54:699-706. [PMID: 37891147 DOI: 10.1016/j.jmir.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND PURPOSE Cervical Spondylotic Myelopathy (CSM) is a gradually escalating spinal cord disturbance set in motion by the degenerative narrowing of the vertebral canal. Routine MRI may fail to detect the subtle early alterations of the cord. MRI Diffusion Tensor Imaging (DTI) possesses the potential to detect these changes. This study intends to estimate the potential of the DTI technique in non-stenotic & stenotic spinal canals in individuals affected with CSM. METHODOLOGY Sixty-four subjects who met the requirements of the inclusion criteria were incorporated into the investigation. All subjects underwent routine MRI sequences in addition to DTI of the cervical spine region. Scalars such as Fractional Anisotropy (FA), besides Apparent Diffusion Coefficient (ADC), were computed at each cervical intervertebral fibrocartilaginous disc level for all subjects. DTI fiber tractography was then performed to qualitatively assess the microstructural integrity of the tracts. RESULTS A noteworthy difference (p<0.05) was seen in the FA parameter and ADC parameter values between the stenotic and non-stenotic groups, with the non-stenotic group having a higher mean FA and a lower ADC than the stenotic group (at the level of stenosis). A significant difference in age was seen between both groups, with most of the patients in the stenotic group belonging to 40 years and above. Tractography helped in demonstrating the morphology of the fiber tracts. CONCLUSION DTI parameters, namely FA and ADC, are sensitive to damage to the white matter and can be used to detect microstructural changes in the cord. However, standardization of the protocol is necessary when imaging the spinal canal.
Collapse
Affiliation(s)
- Kauthankar Akshada Atchut
- Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Lathika Shetty
- Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Kayalvizhi Ravichandran
- Medical Imaging Technology, Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India.
| |
Collapse
|
3
|
Porcine Model of the Growing Spinal Cord-Changes in Diffusion Tensor Imaging Parameters. Animals (Basel) 2023; 13:ani13040565. [PMID: 36830353 PMCID: PMC9951717 DOI: 10.3390/ani13040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique that has promising applications for the objective assessment of the microstructure of the spinal cord. This study aimed to verify the parameters obtained using DTI change during the growth process. We also wanted to identify if the DTI values change on the course of the spinal cord. The model organism was a healthy growing porcine spinal cord (19 pigs, Polish White, weight 24-120 kg, mean 48 kg, median 48 kg, age 2.5-11 months, mean 5 months, median 5.5 months). DTI parameters were measured in three weight groups: up to 29 kg (five pigs), 30-59 kg (six pigs), and from 60 kg up (eight pigs). DTI was performed with a 1.5 Tesla magnetic resonance scanner (Philips, Ingenia). Image post-processing was done using the Fiber Track package (Philips Ingenia workstation) by manually drawing the regions of interest (nine ROIs). The measurements were recorded for three sections: the cervical, thoracolumbar and lumbar segments of the spinal cord at the C4/C5, Th13/L1, and L4/L5 vertebrae levels. In each case, one segment was measured cranially and one caudally from the above-mentioned places. The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were obtained for each ROIs and compared. It is shown that there is a correlation between age, weight gain, and change in FA and ADC parameters. Moreover, it is noted that, with increasing weight and age, the FA parameter increases and ADC decreases, whereas the FA and ADC measurement values did not significantly change between the three sections of the spinal cord. These findings could be useful in determining the reference values for the undamaged spinal cords of animals and growing humans.
Collapse
|
4
|
Arai K, Itoi T, Akashi N, Miyabe M, Sugimoto K, Matsuda A, Maeta N, Kanda T, Kutara K. Variation in Diffusion Tensor Imaging Parameters in the Cervical and Thoracic Spinal Cord (C1-C5 and C6-T2) Segments of Normal Beagle Dogs. Vet Sci 2023; 10:vetsci10010031. [PMID: 36669032 PMCID: PMC9864464 DOI: 10.3390/vetsci10010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
This study aimed to determine the characteristics and reference values of each vertebra in the cervicothoracic region by performing diffusion tensor imaging (DTI) scans and analyzing DTI parameters in normal Beagle dogs. In five adult Beagles under anesthetic maintenance, DTI was performed using a 1.5-T magnetic resonance imaging (MRI) scanner. Axial DTI was performed using three overlapping slabs to cover the cervical and thoracic spinal cords. After post-processing, DTI parameters were calculated along the entire spinal cord. Among DTI parameters, fractional anisotropy, relative anisotropy, and axonal diffusivity significantly decreased in the caudal direction. However, the apparent diffusion coefficient, radial diffusivity, and mean diffusivity values were not significantly correlated with vertebral levels. We provide evidence for the existence of segment-dependent DTI parameters in the canine cervical spinal cord. Therefore, comparisons of DTI parameters between lesions at different vertebral levels should be avoided unless normative data are available. Furthermore, the DTI data obtained in this study may contribute to the development of a clinical reference for spinal cord evaluation in dogs using DTI parameters.
Collapse
|
5
|
Lindig T, Ruff C, Rattay TW, König S, Schöls L, Schüle R, Nägele T, Ernemann U, Klose U, Bender B. Detection of spinal long fiber tract degeneration in HSP: Improved diffusion tensor imaging. Neuroimage Clin 2022; 36:103213. [PMID: 36270162 PMCID: PMC9668628 DOI: 10.1016/j.nicl.2022.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Spinal diffusion tensor imaging (sDTI) is still a challenging technique for selectively evaluating anatomical areas like the pyramidal tracts (PT), dorsal columns (DC), and anterior horns (AH) in clinical routine and for reliably quantifying white matter anisotropy and diffusivity. In neurodegenerative diseases, the value of sDTI is promising but not yet well understood. The objective of this prospective, single-center study was to evaluate the long fiber tract degeneration within the spinal cord in normal aging (n = 125) and to prove its applicability in pathologic conditions as in patients with molecular genetically confirmed hereditary spastic paraplegias (HSP; n = 40), a prototypical disease of the first motor neuron and in some genetic variants with affection of the dorsal columns. An optimized monopolar Stejskal-Tanner sequence for high-resolution, axial sDTI of the cervical spinal cord at 3.0 T with advanced standardized evaluation methods was developed for a robust DTI value estimation of PT, DC, and AH in both groups. After sDTI measurement at C2, an automatic motion correction and an advanced semi-automatic ROI-based, standardized evaluation of white matter anisotropy and diffusivity was performed to obtain regional diffusivity measures for PT, DC, and AH. Reliable and stable sDTI values were acquired in a healthy population without significant decline between age 20 and 65. Reference values for PT, DC, and AH for fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were established. In HSP patients, the decline of the long spinal fiber tracts could be demonstrated by diffusivity abnormalities in the pyramidal tracts with significantly reduced PTFA (p < 0.001), elevated PTRD (p = 0.002) and reduced PTMD (p = 0.003) compared to healthy controls. Furthermore, FA was significantly reduced in DCFA (p < 0.001) with no differences in AH. In a genetically homogeneous subgroup of SPG4 patients (n = 12) with affection of the dorsal columns, DCRD significantly correlated with the overall disease severity as measured by the Spastic Paraplegia Rating Scale (SPRS) (r = - 0.713, p = 0.009). With the most extensive sDTI study in vivo to date, we showed that axial sDTI combined with motion correction and advanced data post-processing strategies enables robust measurements and is ready to use, allowing recognition and quantification of disease- and age-related changes of the PT, DC, and AH. These results may also encourage the usage of sDTI in other neurodegenerative diseases with spinal cord involvement to explore its capability as selective biomarkers.
Collapse
Affiliation(s)
- Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany.
| | - Tim W Rattay
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Stephan König
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Ludger Schöls
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Rebecca Schüle
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Thomas Nägele
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| |
Collapse
|
6
|
Chen S, Wang Y, Wu X, Chang J, Jin W, Li W, Song P, Wu Y, Zhu J, Qian Y, Shen C, Yu Y, Dong F. Degeneration of the Sensorimotor Tract in Degenerative Cervical Myelopathy and Compensatory Structural Changes in the Brain. Front Aging Neurosci 2022; 14:784263. [PMID: 35444527 PMCID: PMC9014124 DOI: 10.3389/fnagi.2022.784263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Degenerative cervical myelopathy is a progressive neurodegenerative disease, that has become increasingly prevalent in the aging population worldwide. The current study determined the factors affecting degeneration in the sensorimotor tract with degenerative cervical myelopathy and its relationship with brain structure. We divided patients into hyperintensity (HS) and non-hyperintensity (nHS) groups and measured the fractional anisotropy and apparent diffusion coefficients of the lateral corticospinal tract (CST), fasciculus gracilis and fasciculus cuneatus (FGC). Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) techniques were used to estimate brain structure changes. Correlation of the modified Japanese Orthopaedic Association (mJOA) score, light touch, pinprick, motor score, and fractional anisotropy (FA) ratios of the CST at different levels were analyzed. Compared to healthy controls, the FA ratios of CST in the HS and nHS groups were decreased at all levels, and the apparent diffusion coefficient (ADC) ratio was increased only at C4/5 levels in the HS group. The FA ratio of FGC was decreased at the C3/4 and C4/5 levels in the HS group and only decreased at the C4/5 level in the nHS group. The ADC ratio was decreased only at the C4/5 level in the HS group. VBM analysis revealed that the volume of the precentral gyrus, postcentral gyrus, and paracentral lobule increased in patients compared to controls. TBSS analysis found no statistical significance between the sensory and motor tracts in white matter. The volume of clusters in HS and nHS groups negatively correlated with the C1/2 FA ratio of the CST. The results showed that the degeneration distance of the CST was longer than the FGC, and the degeneration distance was related to the degree of compression and spinal cord damage. Structural compensation and the neurotrophin family may lead to enlargement of the brain.
Collapse
Affiliation(s)
- Senlin Chen
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Xianyong Wu
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Jianchao Chang
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Weiming Jin
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Wei Li
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Fulong Dong
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
- *Correspondence: Fulong Dong
| |
Collapse
|
7
|
Microstructural Changes in Compressed Cervical Spinal Cord Are Consistent With Clinical Symptoms and Symptom Duration. Spine (Phila Pa 1976) 2020; 45:E999-E1005. [PMID: 32706563 DOI: 10.1097/brs.0000000000003480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study. OBJECTIVE To investigate the association between microstructural changes measured by diffusion tensor imaging (DTI) and clinical symptoms and their duration in patients with cervical spondylotic myelopathy (CSM) affected by single level. SUMMARY OF BACKGROUND DATA No report was reported regarding the association between the microstructural changes and the symptoms and their duration at single-level spinal cord compression. METHODS Twenty-nine consecutive patients with CSM and 29 normal subjects were enrolled in this study. DTI with tractography was performed on the cervical spinal cord. Clinical symptoms were evaluated using modified Japanese Orthopaedic Association (mJOA) scores for each patient, and the duration of clinical symptoms was noted based on the earliest instance of limb pain or numbness or weakness or bladder dysfunction. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from tractography images. RESULTS The mean FA value of the cervical compressed spinal cord was significantly lower than the FA of the normal population (P < 0.001). The mean ADC value in the cervical compressed spinal cord was obviously higher than those of normal cervical spinal cord (P < 0.001). In the CSM patients, a significant positive association was observed between FA values and mJOA scores (P < 0.001). However, there were a notable negative association between mJOA scores and ADC values (P < 0.001), and between mJOA scores and symptom duration (P < 0.001). CONCLUSION These results illustrate DTI can measure the micostructural changes of cervical spinal cord and DTI parameters are potential biomarkers for spinal cord dysfunction in patients with CSM. LEVEL OF EVIDENCE 3.
Collapse
|
8
|
Lewis MJ, Early PJ, Mariani CL, Munana KR, Olby NJ. Influence of Duration of Injury on Diffusion Tensor Imaging in Acute Canine Spinal Cord Injury. J Neurotrauma 2020; 37:2261-2267. [PMID: 32586187 DOI: 10.1089/neu.2019.6786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) quantifies microstructural lesion characteristics, but impact of the interval between spinal cord injury (SCI) and examination on imaging characteristics is unclear. Our objective was to investigate the impact of duration of injury on DTI indices in dogs with acute, spontaneous SCI from thoracolumbar intervertebral disc herniation (IVDH) and explore associations with clinical severity. Twenty-six dogs with acute thoracolumbar IVDH of variable severity who underwent DTI were included. Neurological severity was graded using the modified Frankel Score (0-V). Fractional anisotropy (FA) and mean diffusivity (MD) were calculated on regions of interest within and adjacent to the lesion epicenter. Relationships between FA or MD and duration (injury to imaging interval) or neurological severity were determined using regression analysis and Wilcoxon rank sum. Median age was 6.8 years (1-13), median duration was 1.5 days (1-9), and neurological signs ranged from ambulatory paraparesis (MFS II) to paraplegia with absent pain perception (MFS V). Mean FA was 0.61 ± 0.09 cranial to the lesion, 0.57 ± 0.12 at the epicenter and 0.55 ± 0.10 caudally. Mean MD was 1.18 × 10-3 ± 0.0002 cranially, 1.09 × 10-3 ± 0.0002 at the epicenter, and 1.14 × 10-3 ± 0.0002 caudally. Accounting for neurological severity and age, FA caudal to the epicenter decreased with increasing duration of injury (p = 0.02). Lower MD within the lesion epicenter was associated with worse neurological severity (p = 0.01). Duration of injury should be considered when interpreting DTI results in dogs with acute thoracolumbar IVDH. The MD might differentiate injury severity in the acute setting and be worthy of development as an imaging biomarker.
Collapse
Affiliation(s)
- Melissa J Lewis
- Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher L Mariani
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen R Munana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Shim E, Lee E, Lee JW, Kang Y, Ahn JM, Kang HS. Feasibility of postoperative 3-tesla diffusion tensor imaging in cervical spondylotic myelopathy: A comparison of single-shot EPI and multi-shot EPI. Eur J Radiol 2020; 122:108751. [DOI: 10.1016/j.ejrad.2019.108751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
10
|
Poplawski MM, Alizadeh M, Oleson CV, Fisher J, Marino RJ, Gorniak RJ, Leiby BE, Flanders AE. Application of Diffusion Tensor Imaging in Forecasting Neurological Injury and Recovery after Human Cervical Spinal Cord Injury. J Neurotrauma 2019; 36:3051-3061. [DOI: 10.1089/neu.2018.6092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michael M. Poplawski
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahdi Alizadeh
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christina V. Oleson
- Department of Physical Medicine and Rehabilitation, Case Western Reserve School of Medicine, Cleveland, Ohio
| | - Joshua Fisher
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph J. Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard J. Gorniak
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E. Leiby
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E. Flanders
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Rasoanandrianina H, Massire A, Taso M, Guye M, Ranjeva JP, Kober T, Callot V. Regional T 1 mapping of the whole cervical spinal cord using an optimized MP2RAGE sequence. NMR IN BIOMEDICINE 2019; 32:e4142. [PMID: 31393649 DOI: 10.1002/nbm.4142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The recently-proposed MP2RAGE sequence was purposely optimized for cervical spinal cord imaging at 3T. Sequence parameters were chosen to optimize gray/white matter T1 contrast with sub-millimetric resolution and scan-time < 10 min while preserving reliable T1 determination with minimal B1+ variation effects within a range of values compatible with pathologies and surrounding structures. Results showed good agreements with IR-based measurements, high MP2RAGE-based T1 reproducibility and preliminary evidences of age- and tract-related T1 variations in the healthy spinal cord.
Collapse
Affiliation(s)
- Henitsoa Rasoanandrianina
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- Aix-Marseille University, IFSTTAR, LBA UMR_T24, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille, France-, Montreal, Canada
| | - Aurélien Massire
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille, France-, Montreal, Canada
| | - Manuel Taso
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille, France-, Montreal, Canada
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Guye
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille, France-, Montreal, Canada
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Virginie Callot
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille, France-, Montreal, Canada
| |
Collapse
|
12
|
Diffusion tensor imaging (DTI) and Tractography of the spinal cord in pediatric population with spinal lipomas: preliminary study. Childs Nerv Syst 2019; 35:129-137. [PMID: 30073389 DOI: 10.1007/s00381-018-3935-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE Diffusion tensor imaging (DTI) allows studying the micro and macro architecture. One of the major challenges in dysraphism is to know the morphologic organization of the spinal cord. In a preliminary work, spinal lipoma was chosen for analyzing the micro-architecture parameters and fiber morphology of the spinal cord by DTI with tractography. METHODS Twelve patients (0-8 years) related to spinal lipomas treated between May 2017 and March 2018 were included. Tractography reconstruction of the conus medullaris of 12 patients were obtained using the MedINRIA software. The diffusion parameters have been calculated by Osirix DTImap plugin. RESULTS We found a significant difference in the FA (p = 0.024) between two age groups (< 24 months old and > 24 months old). However, no significant differences in the mean values of FA, RD, and MD between the level of the lipoma and the level above were noted. The tractography obtained in each case was coherent with morphologic sequences and reproducible. The conus medullaris was deformed and shifted. Destruction or disorganization of fibers and any passing inside the lipomas was not observed. CONCLUSIONS Tractography of the conus medullaris in a very young pediatric population (0-8 years old) with a spinal lipoma is possible, reproductive, and allows visualization of the spinal cord within the dysraphism. Analysis of the FA shows that the presence of a lipoma seems to have an effect on the myelination of the conus medullaris. It is during the probable myelination phase that the majority of symptoms appear. Is the myelination per se the cause?
Collapse
|
13
|
Alizadeh M, Fisher J, Saksena S, Sultan Y, Conklin CJ, Middleton DM, Krisa L, Finsterbusch J, Flanders AE, Faro SH, Mulcahey MJ, Mohamed FB. Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord. Neuroimage Clin 2018; 18:784-792. [PMID: 29876264 PMCID: PMC5988463 DOI: 10.1016/j.nicl.2018.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Background and objective Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are two techniques that can measure white matter integrity of the spinal cord. Recently, DTI indices have been shown to change with age. The purpose of this study is (a) to evaluate the maturational states of the entire pediatric spinal cord using DTI and DTT indices including fractional anisotropy (FA), mean diffusivity (MD), mean length of white matter fiber tracts and tract density and (b) to analyze the DTI and DTT parameters along the entire spinal cord as a function of spinal cord levels and age. Method A total of 23 typically developing (TD) pediatric subjects ranging in age from 6 to 16 years old (11.94 ± 3.26 (mean ± standard deviation), 13 females and 10 males) were recruited, and scanned using 3.0 T MR scanner. Reduced FOV diffusion tensor images were acquired axially in the same anatomical location prescribed for the T2-weighted images to cover the entire spinal cord (C1-mid L1 levels). To mitigate motion induced artifacts, diffusion directional images were aligned with the reference image (b0) using a rigid body registration algorithm performed by in-house software developed in Matlab (MathWorks, Natick, Massachusetts). Diffusion tensor maps (FA and MD) and streamline deterministic tractography were then generated from the motion corrected DTI dataset. DTI and DTT parameters were calculated by using ROIs drawn to encapsulate the whole cord along the entire spinal cord by an independent board certified neuroradiologist. These indices then were compared between two age groups (age group A = 6-11 years (n = 11) and age group B = 12-16 years (n = 12)) based on similar standards and age definitions used for reporting spinal cord injury in the pediatric population. Standard least squared linear regression based on a restricted maximum likelihood (REML) method was used to evaluate the relationship between age and DTI and DTT parameters. Results An increase in FA (group A = 0.42 ± 0.097, group B = 0.49 ± 0.116), white matter tract density (group A = 368.01 ± 236.88, group B = 440.13 ± 245.24) and mean length of fiber tracts (group A = 48.16 ± 20.48 mm, group B = 60.28 ± 23.87 mm) and a decrease in MD (group A = 1.06 ± 0.23 × 10-3 mm2/s, group B = 0.82 ± 0.24 × 10-3 mm2/s) were observed with age along the entire spinal cord. Statistically significant increases have been shown in FA (p = 0.004, R2 = 0.57), tract density (p = 0.0004, R2 = 0.58), mean length of fiber tracts (p < 0.001, R2 = 0.5) and a significant decrease has been shown in MD (p = 0.002, R2 = 0.59) between group A and group B. Also, it has been shown DTI and DTT parameters vary along the spinal cord as a function of intervertebral disk and mid-vertebral body level. Conclusion This study provides an initial understanding of age related changes of DTI values as well as DTT metrics of the spinal cord. The results show significant differences in DTI and DTT parameters which may result from decreasing water content, myelination of fiber tracts, and the thickening diameter of fiber tracts during the maturation process. Consequently, when quantitative DTI and DTT of the spinal cord is undertaken in the pediatric population an age and level matched normative dataset should be used to accurately interpret the quantitative results.
Collapse
Affiliation(s)
- Mahdi Alizadeh
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joshua Fisher
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sona Saksena
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yusra Sultan
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Chris J Conklin
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Devon M Middleton
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam E Flanders
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott H Faro
- Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - M J Mulcahey
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
14
|
Massire A, Rasoanandrianina H, Taso M, Guye M, Ranjeva JP, Feiweier T, Callot V. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Magn Reson Med 2018; 80:947-957. [DOI: 10.1002/mrm.27087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Aurélien Massire
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| | - Henitsoa Rasoanandrianina
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| | - Manuel Taso
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
- Division of MRI Research, Department of Radiology; Beth Israel Deaconess Medical Center & Harvard Medical School; Boston Massachusetts USA
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| | | | - Virginie Callot
- Aix-Marseille Univ, CNRS, AP-HM, CRMBM, Hôpital de la Timone; CEMEREM Marseille France
- iLab-Spine - Laboratoire international associé - Imagerie et Biomécanique du rachis, France; Canada
| |
Collapse
|
15
|
Lévy S, Guertin MC, Khatibi A, Mezer A, Martinu K, Chen JI, Stikov N, Rainville P, Cohen-Adad J. Test-retest reliability of myelin imaging in the human spinal cord: Measurement errors versus region- and aging-induced variations. PLoS One 2018; 13:e0189944. [PMID: 29293550 PMCID: PMC5749716 DOI: 10.1371/journal.pone.0189944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/05/2017] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To implement a statistical framework for assessing the precision of several quantitative MRI metrics sensitive to myelin in the human spinal cord: T1, Magnetization Transfer Ratio (MTR), saturation imposed by an off-resonance pulse (MTsat) and Macromolecular Tissue Volume (MTV). METHODS Thirty-three healthy subjects within two age groups (young, elderly) were scanned at 3T. Among them, 16 underwent the protocol twice to assess repeatability. Statistical reliability indexes such as the Minimal Detectable Change (MDC) were compared across metrics quantified within different cervical levels and white matter (WM) sub-regions. The differences between pathways and age groups were quantified and interpreted in context of the test-retest repeatability of the measurements. RESULTS The MDC was respectively 105.7ms, 2.77%, 0.37% and 4.08% for T1, MTR, MTsat and MTV when quantified over all WM, while the standard-deviation across subjects was 70.5ms, 1.34%, 0.20% and 2.44%. Even though particular WM regions did exhibit significant differences, these differences were on the same order as test-retest errors. No significant difference was found between age groups for all metrics. CONCLUSION While T1-based metrics (T1 and MTV) exhibited better reliability than MT-based measurements (MTR and MTsat), the observed differences between subjects or WM regions were comparable to (and often smaller than) the MDC. This makes it difficult to determine if observed changes are due to variations in myelin content, or simply due to measurement error. Measurement error remains a challenge in spinal cord myelin imaging, but this study provides statistical guidelines to standardize the field and make it possible to conduct large-scale multi-center studies.
Collapse
Affiliation(s)
- Simon Lévy
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Marie-Claude Guertin
- Montreal Health Innovations Coordinating Center (MHICC), Montreal Heart Institute, Montreal, QC, Canada
| | - Ali Khatibi
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Psychology Department, Bilkent University, Ankara, Turkey
- Interdisciplinary program in Neuroscience, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Aviv Mezer
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kristina Martinu
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Jen-I Chen
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
| | - Pierre Rainville
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
16
|
Guan L, Chen X, Hai Y, Ma X, He L, Wang G, Yuan C, Guo H. High-resolution diffusion tensor imaging in cervical spondylotic myelopathy: a preliminary follow-up study. NMR IN BIOMEDICINE 2017; 30:e3769. [PMID: 28703331 DOI: 10.1002/nbm.3769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging is a promising technique as it can provide microstructural tissue information and thus potentially show viable changes in spinal cord. However, the traditional single-shot imaging method is limited as a result of various image artifacts. In order to improve measurement accuracy, we used a newly developed, multi-shot, high-resolution, diffusion tensor imaging (DTI) method to investigate diffusion metric changes and compare them with T2 -weighted (T2W) images before and after decompressive surgery for cervical spondylotic myelopathy (CSM). T2W imaging, single-shot DTI and multi-shot DTI were employed to scan seven patients with CSM before and 3 months after decompressive surgery. High signal intensities were scored using the T2 W images. DTI metrics, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were quantified and compared pre- and post-surgery. In addition, the relationship between imaging metrics and neurological assessments was examined. The reproducibility of multi-shot DTI was also assessed in 10 healthy volunteers. Post-surgery, the mean grade of cervical canal stenosis was reduced from grade 3 to normal after 3 months. Compared with single-shot DTI, multi-shot DTI provided better images with lower artifact levels, especially following surgery, as a result of reduced artifacts from metal implants. The new method also showed acceptable reproducibility. Both FA and RD values from the new acquisition showed significant differences post-surgery (FA, p = 0.026; RD, p = 0.048). These changes were consistent with neurological assessments. In contrast, T2W images did not show significant changes before and after surgery. Multi-shot diffusion imaging showed improved image quality over single-shot DWI, and presented superior performance in diagnosis and recovery monitoring for patients with CSM compared with T2W imaging. DTI metrics can reflect the pathological conditions of spondylotic spinal cord quantitatively and may serve as a sensitive biomarker for potential CSM management.
Collapse
Affiliation(s)
- Li Guan
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guangzhi Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Wang K, Chen Z, Zhang F, Song Q, Hou C, Tang Y, Wang J, Chen S, Bian Y, Hao Q, Shen H. Evaluation of DTI Parameter Ratios and Diffusion Tensor Tractography Grading in the Diagnosis and Prognosis Prediction of Cervical Spondylotic Myelopathy. Spine (Phila Pa 1976) 2017; 42:E202-E210. [PMID: 28207659 DOI: 10.1097/brs.0000000000001784] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective cohort. OBJECTIVE To explore the correlations between diffusion tensor imaging (DTI) ratios and diffusion tensor tractography (DTT) grading with clinical symptoms and outcomes of cervical spondylotic myelopathy (CSM). SUMMARY OF BACKGROUND DATA In addition to magnetic resonance imaging (MRI) and computed tomography, DTI may be useful in understanding pathophysiology of spinal cord in earlier stages of the CSM but it may be confounded by age and cervical level, and previous studies had small sample sizes. METHODS Controls (n = 36) and patients with CSM (n = 93) underwent magnetic resonance imaging (MRI) and DTI at the Changhai Hospital of Shanghai between September 2011 and March 2013. Apparent diffusion coefficient (ADC), fractional anisotropy (FA) of white matter (WM), and central grey matter (GM) were assessed. Patients were divided into three MRI grades: no abnormal signals; increased T2WI; and increased T2WI and low T1WI. DTT images were divided into three grades: no abnormal signals; abnormal local signal cord and disordered fiber tracts; and distortion of the spinal cord and interrupted fiber tracts. RESULTS FA and ADC both correlated with age in all three bilateral WM funiculi and GM, whereas FA and ADC ratios only showed correlation with age in the ventral funiculus (VF) and central GM. Differences were observed in ADC ratios and FA ratios from different Japanese Orthopedic Association (JOA) score subgroups and JOA recovery subgroups. For the three WM funiculi and GM, correlations between DTI ratios, JOA scores, and JOA recovery rates were consistently higher than those between DTI values, JOA scores, and JOA recovery rates (all P < 0.05). MRI grading was correlated with the JOA scores (r = -0.674, P < 0.001) but not JOA recovery rates (r = -0.197, P = 0.058), whereas DTT grading was correlated with both JOA scores (r = -0.813, P < 0.001) and JOA recovery rate (r = -0.429, P < 0.001). CONCLUSION DTI parameter ratios seemed to be less influenced by age than raw DTI results and could be more valuable than absolute DTI parameters for the evaluation of CSM. DTT grading is more valuable than MRI grading for diagnosis and prognostic prediction in CSM patients. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Kun Wang
- Orthopedics Department, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Orthopedics Department, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Orthopedics Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingxin Song
- Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Canglong Hou
- Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yixing Tang
- Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Jun Wang
- Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Shiyue Chen
- Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yun Bian
- Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Qiang Hao
- Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Hongxing Shen
- Orthopedics Department, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhao M, Shi B, Chen T, Zhang Y, Geng T, Qiao L, Zhang M, He L, Zuo H, Wang G. Axial MR diffusion tensor imaging and tractography in clinical diagnosed and pathology confirmed cervical spinal cord astrocytoma. J Neurol Sci 2017; 375:43-51. [PMID: 28320182 DOI: 10.1016/j.jns.2017.01.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) features of cervical spinal cord astrocytoma. METHODS Eleven patients with cervical spinal cord astrocytomas and 10 healthy volunteers were recruited in this study. Conventional magnetic resonance imaging (MRI) and axial DTI were performed on a 3.0T MRI system. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) values for the lesions were measured. DTT was performed using the principal diffusion direction method. RESULTS ADC values of the lesions and the normal-appearing tissue around the tumour (NATAT) on T2-weighted imaging (T2WI) increased. The ADC values of the lesions were higher. The FA values of the lesions and the NATAT decreased significantly, with the lesions having lower FA values. The RD value (1.36±0.49) of the tumours was significantly higher than those found in the healthy controls, but similar for the AD value (1.84±0.56). There were no differences in ADC or FA values between lesions and NATAT in McCormick Type I vs. Type II patients. Based on the DTT, 7 patients with solid mass tumours were classified as Type I. One patient with a solid mass, 2 patients with cystic degeneration inside the lesions, and 1 patient with a cyst around the mass were classified as Type II. CONCLUSIONS FA values of the cervical spinal cord astrocytoma decreased, but the ADC values increased. DTI was sensitive for the evaluation of pathological changes that could not be visualized on T2WI. Our preliminary study indicates that DTT can be used to guide operation planning, and that axial images of DTT may be more valuable.
Collapse
Affiliation(s)
- Mangsuo Zhao
- Department of Neurology, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China
| | - Bingxin Shi
- Department of Neurology, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China
| | - Tuoyu Chen
- Department of Neurosurgery, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China
| | - Yuqi Zhang
- Department of Neurosurgery, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China
| | - Tongchao Geng
- Department of Neurology, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China
| | - Liyan Qiao
- Department of Neurology, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China
| | - Mingjie Zhang
- Department of Neurology, PLA General Hospital, Beijing 100853, PR China
| | - Le He
- Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, PR China
| | - Huancong Zuo
- Department of Neurosurgery, Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing 100040, PR China.
| | - Guihuai Wang
- Department of Neurosurgery, Changgung Hospital, Medical Center, Tsinghua University, Beijing 102218, PR China.
| |
Collapse
|
19
|
Saksena S, Middleton DM, Krisa L, Shah P, Faro SH, Sinko R, Gaughan J, Finsterbusch J, Mulcahey MJ, Mohamed FB. Diffusion Tensor Imaging of the Normal Cervical and Thoracic Pediatric Spinal Cord. AJNR Am J Neuroradiol 2016; 37:2150-2157. [PMID: 27418470 DOI: 10.3174/ajnr.a4883] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/23/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE DTI data of the normal healthy spinal cord in children are limited compared with adults and are typically focused on the cervical spinal cord. The purpose of this study was the following: to investigate the feasibility of obtaining repeatable DTI parameters along the entire cervical and thoracic spinal cord as a function of age in typically developing pediatric subjects; to analyze the DTI parameters among different transverse levels of the cervical and thoracic spinal cord; and to examine the sex differences in DTI parameters along the cervical and thoracic spinal cord. MATERIALS AND METHODS Twenty-two subjects underwent 2 identical scans by using a 3T MR imaging scanner. Axial diffusion tensor images were acquired by using 2 overlapping slabs to cover the cervical and thoracic spinal cord. After postprocessing, DTI parameters were calculated by using ROIs drawn on the whole cord along the entire spinal cord for both scans. RESULTS An increase in fractional anisotropy and a decrease in mean diffusivity, axial diffusivity, and radial diffusivity were observed with age along the entire spinal cord. Significantly lower fractional anisotropy and higher mean diffusivity values were observed in the lower cervical cord compared with the upper cervical cord. Axial diffusivity values in the cervical cord were higher compared with the thoracic cord. No statistically significant sex differences were observed for all DTI parameters. There was a moderate-to-strong repeatability for all DTI parameters. CONCLUSIONS This study provides an initial understanding of DTI values of the spinal cord relevant to age and sex and shows that obtaining repeatable DTI values of the entire cord in children is feasible.
Collapse
Affiliation(s)
- S Saksena
- From the Departments of Radiology (S.S., F.B.M.)
| | - D M Middleton
- Department of Radiology (D.M.M., P.S., S.H.F.), Temple University, Philadelphia, Pennsylvania
| | - L Krisa
- Occupational Therapy (L.K., R.S., M.J.M.), Thomas Jefferson University, Philadelphia, Pennsylvania
| | - P Shah
- Department of Radiology (D.M.M., P.S., S.H.F.), Temple University, Philadelphia, Pennsylvania
| | - S H Faro
- Department of Radiology (D.M.M., P.S., S.H.F.), Temple University, Philadelphia, Pennsylvania
| | - R Sinko
- Occupational Therapy (L.K., R.S., M.J.M.), Thomas Jefferson University, Philadelphia, Pennsylvania
| | - J Gaughan
- Biostatistics Consulting Center (J.G.), Temple University School of Medicine, Philadelphia, Pennsylvania
| | - J Finsterbusch
- Department of Systems Neuroscience (J.F.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M J Mulcahey
- Occupational Therapy (L.K., R.S., M.J.M.), Thomas Jefferson University, Philadelphia, Pennsylvania
| | - F B Mohamed
- From the Departments of Radiology (S.S., F.B.M.)
| |
Collapse
|
20
|
Keřkovský M, Bednařík J, Jurová B, Dušek L, Kadaňka Z, Kadaňka Z, Němec M, Kovaľová I, Šprláková-Puková A, Mechl M. Spinal Cord MR Diffusion Properties in Patients with Degenerative Cervical Cord Compression. J Neuroimaging 2016; 27:149-157. [DOI: 10.1111/jon.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Miloš Keřkovský
- Department of Radiology; University Hospital Brno; Czech Republic
- Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Josef Bednařík
- Department of Neurology; University Hospital Brno; Czech Republic
- Applied Neurosciences Research Group, Central European Institute of Technology; Masaryk University; Brno Czech Republic
| | - Barbora Jurová
- Department of Radiology; University Hospital Brno; Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses; Masaryk University Brno; Czech Republic
| | - Zdeněk Kadaňka
- Department of Neurology; University Hospital Brno; Czech Republic
| | - Zdeněk Kadaňka
- Department of Neurology; University Hospital Brno; Czech Republic
| | - Martin Němec
- Department of Neurology; University Hospital Brno; Czech Republic
| | - Ivana Kovaľová
- Department of Neurology; University Hospital Brno; Czech Republic
- Applied Neurosciences Research Group, Central European Institute of Technology; Masaryk University; Brno Czech Republic
| | - Andrea Šprláková-Puková
- Department of Radiology; University Hospital Brno; Czech Republic
- Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Marek Mechl
- Department of Radiology; University Hospital Brno; Czech Republic
| |
Collapse
|
21
|
Taso M, Girard OM, Duhamel G, Le Troter A, Feiweier T, Guye M, Ranjeva JP, Callot V. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR IN BIOMEDICINE 2016; 29:817-832. [PMID: 27100385 DOI: 10.1002/nbm.3530] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/17/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Being able to finely characterize the spinal cord (SC) microstructure and its alterations is a key point when investigating neural damage mechanisms encountered in different central nervous system (CNS) pathologies, such as multiple sclerosis, amyotrophic lateral sclerosis or myelopathy. Based on novel methods, including inhomogeneous magnetization transfer (ihMT) and dedicated SC probabilistic atlas post-processing, the present study focuses on the in vivo characterization of the healthy SC tissue in terms of regional microstructure differences between (i) upper and lower cervical vertebral levels and (ii) sensory and motor tracts, as well as differences attributed to normal aging. Forty-eight healthy volunteers aged from 20 to 70 years old were included in the study and scanned at 3 T using axial high-resolution T2 *-w imaging, diffusion tensor imaging (DTI) and ihMT, at two vertebral levels (C2 and C5). A processing pipeline with minimal user intervention, SC segmentation and spatial normalization into a reference space was implemented in order to assess quantitative morphological and structural parameters (cross-sectional areas, scalar DTI and MT/ihMT metrics) in specific white and gray matter regions of interest. The multi-parametric MRI metrics collected allowed upper and lower cervical levels to be distinguished, with higher ihMT ratio (ihMTR), higher axial diffusivity (λ∥ ) and lower radial diffusivity (λ⊥ ) at C2 compared with C5. Significant differences were also observed between white matter fascicles, with higher ihMTR and lower λ∥ in motor tracts compared with posterior sensory tracts. Finally, aging was found to be associated with significant metric alterations (decreased ihMTR and λ∥ ). The methodology proposed here, which can be easily transferred to the clinic, provides new insights for SC characterization. It bears great potential to study focal and diffuse SC damage in neurodegenerative and demyelinating diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Manuel Taso
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Aix-Marseille Université, IFSTTAR, Laboratoire de Biomécanique Appliquée (LBA), UMR T 24, Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Olivier M Girard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | | | - Maxime Guye
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| |
Collapse
|
22
|
Normal values of cervical spinal cord diffusion tensor in young and middle-aged healthy Chinese. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015. [DOI: 10.1007/s00586-015-4144-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: A 2D phase sensitive inversion recovery imaging study. PLoS One 2015; 10:e0118576. [PMID: 25781178 PMCID: PMC4363673 DOI: 10.1371/journal.pone.0118576] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/13/2015] [Indexed: 11/24/2022] Open
Abstract
The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord.
Collapse
|