1
|
Borde T, Saccenti L, Li M, Varble NA, Hazen LA, Kassin MT, Ukeh IN, Horton KM, Delgado JF, Martin C, Xu S, Pritchard WF, Karanian JW, Wood BJ. Smart goggles augmented reality CT-US fusion compared to conventional fusion navigation for percutaneous needle insertion. Int J Comput Assist Radiol Surg 2025; 20:107-115. [PMID: 38814530 PMCID: PMC11758159 DOI: 10.1007/s11548-024-03148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Targeting accuracy determines outcomes for percutaneous needle interventions. Augmented reality (AR) in IR may improve procedural guidance and facilitate access to complex locations. This study aimed to evaluate percutaneous needle placement accuracy using a goggle-based AR system compared to an ultrasound (US)-based fusion navigation system. METHODS Six interventional radiologists performed 24 independent needle placements in an anthropomorphic phantom (CIRS 057A) in four needle guidance cohorts (n = 6 each): (1) US-based fusion, (2) goggle-based AR with stereoscopically projected anatomy (AR-overlay), (3) goggle AR without the projection (AR-plain), and (4) CT-guided freehand. US-based fusion included US/CT registration with electromagnetic (EM) needle, transducer, and patient tracking. For AR-overlay, US, EM-tracked needle, stereoscopic anatomical structures and targets were superimposed over the phantom. Needle placement accuracy (distance from needle tip to target center), placement time (from skin puncture to final position), and procedure time (time to completion) were measured. RESULTS Mean needle placement accuracy using US-based fusion, AR-overlay, AR-plain, and freehand was 4.5 ± 1.7 mm, 7.0 ± 4.7 mm, 4.7 ± 1.7 mm, and 9.2 ± 5.8 mm, respectively. AR-plain demonstrated comparable accuracy to US-based fusion (p = 0.7) and AR-overlay (p = 0.06). Excluding two outliers, AR-overlay accuracy became 5.9 ± 2.6 mm. US-based fusion had the highest mean placement time (44.3 ± 27.7 s) compared to all navigation cohorts (p < 0.001). Longest procedure times were recorded with AR-overlay (34 ± 10.2 min) compared to AR-plain (22.7 ± 8.6 min, p = 0.09), US-based fusion (19.5 ± 5.6 min, p = 0.02), and freehand (14.8 ± 1.6 min, p = 0.002). CONCLUSION Goggle-based AR showed no difference in needle placement accuracy compared to the commercially available US-based fusion navigation platform. Differences in accuracy and procedure times were apparent with different display modes (with/without stereoscopic projections). The AR-based projection of the US and needle trajectory over the body may be a helpful tool to enhance visuospatial orientation. Thus, this study refines the potential role of AR for needle placements, which may serve as a catalyst for informed implementation of AR techniques in IR.
Collapse
Affiliation(s)
- Tabea Borde
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA.
| | - Laetitia Saccenti
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
- Henri Mondor Biomedical Research Institute, Inserm U955, Team N°18, Créteil, France
| | - Ming Li
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Nicole A Varble
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
- Philips Healthcare, Cambridge, MA, 02141, USA
| | - Lindsey A Hazen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Michael T Kassin
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Ifechi N Ukeh
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Keith M Horton
- Department of Radiology, Georgetown Medical School, Medstar Washington Hospital Center, Washington, DC, 20007, USA
| | - Jose F Delgado
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Charles Martin
- Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sheng Xu
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Sorensen AM, Zlevor AM, Kisting MA, Couillard AB, Ziemlewicz TJ, Toia GV, Hinshaw JL, Woods M, Stratchko LM, Pickhardt PJ, Foltz ML, Peppler WW, Lee FT, Knavel Koepsel EM. CT Navigation for Percutaneous Needle Placement: How I Do It. Tech Vasc Interv Radiol 2023; 26:100911. [PMID: 38071032 DOI: 10.1016/j.tvir.2023.100911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
CT navigation (CTN) has recently been developed to combine many of the advantages of conventional CT and CT-fluoroscopic guidance for needle placement. CTN systems display real-time needle position superimposed on a CT dataset. This is accomplished by placing electromagnetic (EM) or optical transmitters/sensors on the patient and needle, combined with fiducials placed within the scan field to superimpose a known needle location onto a CT dataset. Advantages of CTN include real-time needle tracking using a contemporaneous CT dataset with the patient in the treatment position, reduced radiation to the physician, facilitation of procedures outside the gantry plane, fewer helical scans during needle placement, and needle guidance based on diagnostic-quality CT datasets. Limitations include the display of a virtual (vs actual) needle position, which can be inaccurate if the needle bends, the fiducial moves, or patient movement occurs between scans, and limitations in anatomical regions with a high degree of motion such as the lung bases. This review summarizes recently introduced CTN technologies in comparison to historical methods of CT needle guidance. A "How I do it" section follows, which describes how CT navigation has been integrated into the study center for both routine and challenging procedures, and includes step-by-step explanations, technical tips, and pitfalls.
Collapse
Affiliation(s)
- Anna M Sorensen
- Departments of Radiology, University of Wisconsin, Madison, WI
| | - Annie M Zlevor
- Departments of Radiology, University of Wisconsin, Madison, WI
| | | | | | | | - Giuseppe V Toia
- Departments of Radiology, University of Wisconsin, Madison, WI; Medical Physics, University of Wisconsin, Madison, WI
| | - J Louis Hinshaw
- Departments of Radiology, University of Wisconsin, Madison, WI; Departments of Urology, University of Wisconsin, Madison, WI
| | - Michael Woods
- Departments of Radiology, University of Wisconsin, Madison, WI
| | | | | | - Marcia L Foltz
- Departments of Radiology, University of Wisconsin, Madison, WI
| | | | - Fred T Lee
- Departments of Radiology, University of Wisconsin, Madison, WI; Departments of Urology, University of Wisconsin, Madison, WI; Biomedical Engineering, University of Wisconsin, Madison, WI
| | | |
Collapse
|
3
|
Improving puncture accuracy in percutaneous CT-guided needle insertion with wireless inertial measurement unit: a phantom study. Eur Radiol 2023; 33:3156-3164. [PMID: 36826496 DOI: 10.1007/s00330-023-09467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/07/2022] [Accepted: 01/22/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES A novel method applying inertial measurement units (IMUs) was developed to assist CT-guided puncture, which enables real-time displays of planned and actual needle trajectories. The method was compared with freehand and laser protractor-assisted methods. METHODS The phantom study was performed by three operators with 8, 2, and 0 years of experience in CT-guided procedure conducted five consecutive needle placements for three target groups using three methods (freehand, laser protractor-assisted, or IMU-assisted method). The endpoints included mediolateral angle error and caudocranial angle error of the first pass, the procedure time, the total number of needle passes, and the radiation dose. RESULTS There was a significant difference in the number of needle passes (IMU 1.2 ± 0.42, laser protractor 2.9 ± 1.6, freehand 3.6 ± 2.0 time, p < 0.001), the procedure time (IMU 3.0 ± 1.2, laser protractor 6.4 ± 2.9, freehand 6.2 ± 3.1 min, p < 0.001), the mediolateral angle error of the first pass (IMU 1.4 ± 1.2, laser protractor 1.6 ± 1.3, freehand 3.7 ± 2.5 degree, p < 0.001), the caudocranial angle error of the first pass (IMU 1.2 ± 1.2, laser protractor 5.3 ± 4.7, freehand 3.9 ± 3.1 degree, p < 0.001), and the radiation dose (IMU 250.5 ± 74.1, laser protractor 484.6 ± 260.2, freehand 561.4 ± 339.8 mGy-cm, p < 0.001) among three CT-guided needle insertion methods. CONCLUSION The wireless IMU improves the angle accuracy and speed of CT-guided needle punctures as compared with laser protractor guidance and freehand techniques. KEY POINTS • The IMU-assisted method showed a significant decrease in the number of needle passes (IMU 1.2 ± 0.42, laser protractor 2.9 ± 1.6, freehand 3.6 ± 2.0 time, p < 0.001). • The IMU-assisted method showed a significant decrease in the procedure time (IMU 3.0 ± 1.2, laser protractor 6.4 ± 2.9, freehand 6.2 ± 3.1 min, p < 0.001). • The IMU-assisted method showed a significant decrease in the mediolateral angle error of the first pass and the caudocranial angle error of the first pass.
Collapse
|
4
|
Diepers M, Gruber P, Remonda L, Berberat J. Case report: Experience with the Cube Navigation System in complex access routes during CT-guided lumbosacral infiltration therapy. Front Surg 2023; 10:1093964. [PMID: 36865624 PMCID: PMC9971217 DOI: 10.3389/fsurg.2023.1093964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose Computed tomography (CT)-guided infiltrations are a mainstay in the treatment of lower back pain. Needle placement is usually performed using the free-hand method, where the translation from the planned needle angle to the actual needle insertion angle is estimated. However, the free-hand method is especially challenging in cases where a double-oblique access route (out-of-plane) rather than an in-plane route is necessary. In this case series, we report our experience with the patient-mounted Cube Navigation System to guide needle placement for complex access routes in lumbar pain therapy. Research design and methods We retrospectively analyzed the cases of five patients in whom a double-oblique access route was necessary for CT-guided lumbar infiltration pain treatment. Each of those procedures was done using the Cube Navigation System to provide navigational guidance. The mean patient age was 69 ± 13 years (range 58-82 years; all females). Technical success, procedure time, and number of control scans were determined retrospectively. Results Technical success (i.e., positioning and accuracy) was obtained in all cases. Mean procedure time was 15 ± 7 min (10-22 min); on average, 2 ± 1 CT control scans were performed. There were no complications or material failures reported in the present study. Conclusion Double-oblique punctures with the Cube Navigation System in this initial case series of complex access routes at the lumbar spine were accurate and the procedure was time efficient. In the authors' view, the Cube Navigation System has the potential to improve needle guidance for complex access routes, especially considering the ease of use of the device.
Collapse
Affiliation(s)
- Michael Diepers
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Gruber
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Remonda
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | | |
Collapse
|
5
|
Xu H, Zhao Y, Yuan J, Li W, Ni J. A Novel Laser Angle Selection System for Computed Tomography-Guided Percutaneous Transthoracic Needle Biopsies. Can Assoc Radiol J 2022; 74:455-461. [PMID: 36301082 DOI: 10.1177/08465371221133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate a novel laser angle selection system (LASS) for improving the efficiency of a computed tomography (CT)–guided percutaneous transthoracic needle biopsy (PTNB). Methods: Thirty-eight patients referred for CT-guided PTNB were randomly separated into a LASS-assisted puncture group (18 patients) or conventional freehand control group (20 patients). The puncture time, number of control CT scans, and patients’ radiation dose were compared for each group. Results: The lesion size, target-to-pleural distance, planned puncture depth, and angle of the two groups were not significantly different. LASS-assisted PTNB significantly reduced the number of control scans (1.7 ± 0.8 vs 3.5 ± 1.5, P < .001) and the mean operation time (12.0 ± 4.3 min vs 28.8 ± 13.3 min, P < .001) compared with the conventional method. The corresponding room time (27.1 ± 6.6 min vs 44.1 ± 14.4 min, P < .001) and total radiation dose (7.9 ± 1.0 mSv vs 10.1 ± 1.7 mSv, P < .001) of each procedure also decreased significantly. Fifty-six percent (10/18) of the operations hit the target on the first needle pass when using LASS compared with 10% (2/20) using the conventional method. Conclusions: Compared with a conventional method, this novel laser angle simulator improves puncture efficiency with fewer needle readjustments and reduces patient radiation dose.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Radiology, Wuxi No. 2 Peolpe's Hospital, Affiliated Wuxi Clinical College of Nangtong University, Wuxi, Jiangsu 214042, China
| | - Yanjun Zhao
- Department of Radiology, Wuxi No. 2 Peolpe's Hospital, Affiliated Wuxi Clinical College of Nangtong University, Wuxi, Jiangsu 214042, China
| | - Jiaqi Yuan
- Department of Radiology, Wuxi No. 2 Peolpe's Hospital, Affiliated Wuxi Clinical College of Nangtong University, Wuxi, Jiangsu 214042, China
| | - Wei Li
- Department of Radiology, Wuxi No. 2 Peolpe's Hospital, Affiliated Wuxi Clinical College of Nangtong University, Wuxi, Jiangsu 214042, China
| | - Jianming Ni
- Department of Radiology, Wuxi No. 2 Peolpe's Hospital, Affiliated Wuxi Clinical College of Nangtong University, Wuxi, Jiangsu 214042, China
| |
Collapse
|
6
|
Grigoriadis S, Filippiadis D, Stamatopoulou V, Alexopoulou E, Kelekis N, Kelekis A. Navigation Guidance for Percutaneous Splanchnic Nerve Radiofrequency Neurolysis: Preliminary Results. Medicina (B Aires) 2022; 58:medicina58101359. [PMID: 36295520 PMCID: PMC9607001 DOI: 10.3390/medicina58101359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: To describe preliminary results upon the application of the “Cube Navigation System” (CNS) for computed tomography (CT)-guided splanchnic nerve radiofrequency neurolysis. Materials and Methods: CT-guided splanchnic nerve neurolysis was performed in five patients; in all cases, neurolysis was performed under CT guidance using the CNS. The mean patient age was 71.6 years (range 54–81 years; male/female: 5/0). Technical success, parameters of the neurolysis session and complications were evaluated. Technical success was defined as a needle position on the defined target. Session parameters included procedure time and number of scans. The CIRSE reporting system was used for complications’ classification and grading. Results: Technical success was obtained in all cases; in 1/5 patients, a slight correction in needle orientation was necessary. Mean procedure time was 12.4 min (range 8–19 min); an average of four CT scans was recorded in the five neurolysis sessions. There were no complications or material failures reported in the present study. Conclusions: Preliminary results of the present study show that computed tomography (CT)-guided splanchnic nerve radiofrequency neurolysis using the CNS is an accurate and time-efficient percutaneous procedure. More prospective and comparative studies with larger patient samples are necessary for verification of this system as well as for drawing broader conclusions.
Collapse
|
7
|
Pedersoli F, Wilkmann C, Penzkofer T, Disselhorst-Klug C, Schmitz-Rode T, Kuhl C, Bruners P, Isfort P. An accelerometer-based guidance device for CT-guided procedures: an improved wireless prototype. MINIM INVASIV THER 2021; 31:902-908. [PMID: 34865602 DOI: 10.1080/13645706.2021.2002363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The aim of the study was to demonstrate the feasibility of a prototype for accelerometer-based guidance for percutaneous CT-guided punctures and compare it with free-hand punctures. MATERIAL AND METHODS The prototype enabled alignment with the CT coordinate system and a wireless connectivity. Its feasibility was tested in a swine cadaver model: 20 out-of-plane device-assisted punctures performed without intermittent control scans (one-step punctures) were evaluated regarding deviation to target and difference between planned and obtained angle. Thereafter, 22 device-assisted punctures were compared with 20 free-hand punctures regarding distance to target, deviation from the planned angle, number of control scans and procedure time. Differences were compared with the Mann-Whitney U-test (p < .05). RESULTS The one-step punctures revealed a deviation to target of 0.26 ± 0.37 cm (axial plane) and 0.21 ± 0.19 cm (sagittal plane) and differences between planned and performed puncture angles of 0.9 ± 1.09° (axial plane) and 1.15 ± 0.91° (sagittal planes). In the comparative study, device-assisted punctures showed a significantly higher accuracy, 0.20 ± 0.17 cm vs. 0.30 ± 0.21 cm (p < .05) and lower number of required control scans, 1.3 ± 1.1 vs. 3.7 ± 0.9 (p < .05) compared with free-hand punctures. CONCLUSION The accelerometer-based device proved to be feasible and demonstrated significantly higher accuracy and required significantly less control scans compared to free-hand puncture.
Collapse
Affiliation(s)
- Federico Pedersoli
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christoph Wilkmann
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Applied Medical Engineering, Deptartment of Rehabilitation & Prevention Engineering, RWTH Aachen University, Aachen, Germany
| | - Tobias Penzkofer
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Catherine Disselhorst-Klug
- Institute of Applied Medical Engineering, Deptartment of Rehabilitation & Prevention Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Deptartment of Rehabilitation & Prevention Engineering, RWTH Aachen University, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Isfort
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
8
|
Lanouzière M, Varbédian O, Chevallier O, Griviau L, Guillen K, Popoff R, Aho-Glélé SL, Loffroy R. Computed Tomography-Navigation™ Electromagnetic System Compared to Conventional Computed Tomography Guidance for Percutaneous Lung Biopsy: A Single-Center Experience. Diagnostics (Basel) 2021; 11:diagnostics11091532. [PMID: 34573873 PMCID: PMC8470612 DOI: 10.3390/diagnostics11091532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of our study was to assess the efficacy of a computed tomography (CT)-Navigation™ electromagnetic system compared to conventional CT methods for percutaneous lung biopsies (PLB). In this single-center retrospective study, data of a CT-Navigation™ system guided PLB (NAV-group) and conventional CT PLB (CT-group) performed between January 2017 and February 2020 were reviewed. The primary endpoint was the diagnostic success. Secondary endpoints were technical success, total procedure duration, number of CT acquisitions and the dose length product (DLP) during step ∆1 (from planning to initial needle placement), step ∆2 (progression to target), and the entire intervention (from planning to final control) and complications. Additional parameters were recorded, such as the lesion’s size and trajectory angles. Sixty patients were included in each group. The lesions median size and median values of the two trajectory angles were significantly lower (20 vs. 29.5 mm, p = 0.006) and higher in the NAV-group (15.5° and 10° vs. 6° and 1°; p < 0.01), respectively. Technical and diagnostic success rates were similar in both groups, respectively 95% and 93.3% in the NAV-group, and 93.3% and 91.6% in the CT-group. There was no significant difference in total procedure duration (p = 0.487) and total number of CT acquisitions (p = 0.066), but the DLP was significantly lower in the NAV-group (p < 0.01). There was no significant difference in complication rate. For PLB, CT-Navigation™ system is efficient and safe as compared to the conventional CT method.
Collapse
Affiliation(s)
- Morgane Lanouzière
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (O.C.); (K.G.)
| | - Olivier Varbédian
- Georges-François Leclerc Cancer Center, Department of Radiology, 1 Rue du Professeur Marion, 21000 Dijon, France; (O.V.); (L.G.)
| | - Olivier Chevallier
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (O.C.); (K.G.)
| | - Loïc Griviau
- Georges-François Leclerc Cancer Center, Department of Radiology, 1 Rue du Professeur Marion, 21000 Dijon, France; (O.V.); (L.G.)
| | - Kévin Guillen
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (O.C.); (K.G.)
| | - Romain Popoff
- Georges-François Leclerc Cancer Center, Department of Medical Physics, 1 Rue du Professeur Marion, 21000 Dijon, France;
| | - Serge-Ludwig Aho-Glélé
- Department of Epidemiology and Biostatistics, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France;
| | - Romaric Loffroy
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (O.C.); (K.G.)
- Correspondence: ; Tel.: +33-380-293-677
| |
Collapse
|
9
|
Mokry A, Willmitzer F, Hostettler R, Richter H, Kircher P, Kneissl S, Wetzel S. Evaluation of a novel, patient-mounted system for CT-guided needle navigation—an ex vivo study. Neuroradiology 2018; 61:55-61. [DOI: 10.1007/s00234-018-2107-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
|
10
|
Gruber-Rouh T, Thalhammer A, Klingebiel T, Nour-Eldin NEA, Vogl TJ, Eichler K, Naguib N, Beeres M. Computed tomography-guided biopsies in children: accuracy, efficiency and dose usage. Ital J Pediatr 2017; 43:4. [PMID: 28057068 PMCID: PMC5217564 DOI: 10.1186/s13052-016-0319-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 01/20/2023] Open
Abstract
Background Computed-tomography-guided interventions are attractive for tissue sampling of paediatric tumor lesions; however, it comes with exposure to ionizing radiation. The aim of this study was to analyse the radiation dose, accuracy and speed of CT-guided interventions in paediatric patient cohort. Methods We retrospectively reviewed CT-guided interventions over a 10 -year period in 65 children. The intervention site consisted of bones in 38, chest (lung) in 15 and abdomen (liver, lymph nodes) in 12 cases. Radiation dose and duration of the procedures were analysed. The statistical analysis was performed using dedicated statistical software (BiAS 8.3.6 software, Epsilon Verlag, North Hasted). Results All interventions were performed successfully. Mean target access path to lesion within the patients was 6.0 cm (min 3.5 cm, max 11.2 cm). Time duration to complete intervention was 25:15 min (min 17:03 min, max 43:00 min). The dose-length product (DLP) of intervention scan was 29.5 mGy · cm (min 6 mGy · cm, max 85 mGy · cm) with the lowest dose for biopsies in the region of the chest (p = 0.04). Conclusions With justified indications, CT-guided paediatric interventions are safe, effective and can be performed both, with short intervention times and low radiation exposure.
Collapse
Affiliation(s)
- Tatjana Gruber-Rouh
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Axel Thalhammer
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Clinic for Pediatric and Adolescent Medicine, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Nour-Eldin A Nour-Eldin
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Department of Diagnostic and Interventional Radiology, Cairo University Hospital, Cairo, Egypt
| | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katrin Eichler
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Nagy Naguib
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Department of Diagnostic and Interventional Radiology, Alexandria University Hospital, Alexandria, Egypt
| | - Martin Beeres
- Institute for Diagnostic and Interventional Radiology, University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|