1
|
Remy-Jardin M, Guiffault L, Oufriche I, Duhamel A, Flohr T, Schmidt B, Remy J. Image quality of lung perfusion with photon-counting-detector CT: comparison with dual-source, dual-energy CT. Eur Radiol 2024; 34:7831-7844. [PMID: 38967660 DOI: 10.1007/s00330-024-10888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE To evaluate the quality of lung perfusion imaging obtained with photon-counting-detector CT (PCD-CT) in comparison with dual-source, dual-energy CT (DECT). METHODS Seventy-one consecutive patients scanned with PCD-CT were compared to a paired population scanned with dual-energy on a 3rd-generation DS-CT scanner using (a) for DS-CT (Group 1): collimation: 64 × 0.6 × 2 mm; pitch: 0.55; (b) for PCD-CT (Group 2): collimation: 144 × 0.4 mm; pitch: 1.5; single-source acquisition. The injection protocol was similar in both groups with the reconstruction of perfusion images by subtraction of high- and low-energy virtual monoenergetic images. RESULTS Compared to Group 1, Group 2 examinations showed: (a) a shorter duration of data acquisition (0.93 ± 0.1 s vs 3.98 ± 0.35 s; p < 0.0001); (b) a significantly lower dose-length-product (172.6 ± 55.14 vs 339.4 ± 75.64 mGy·cm; p < 0.0001); and (c) a higher level of objective noise (p < 0.0001) on mediastinal images. On perfusion images: (a) the mean level of attenuation did not differ (p = 0.05) with less subjective image noise in Group 2 (p = 0.049); (b) the distribution of scores of fissure visualization differed between the 2 groups (p < 0.0001) with a higher proportion of fissures sharply delineated in Group 2 (n = 60; 84.5% vs n = 26; 26.6%); (c) the rating of cardiac motion artifacts differed between the 2 groups (p < 0.0001) with a predominance of examinations rated with mild artifacts in Group 2 (n = 69; 97.2%) while the most Group 1 examinations showed moderate artifacts (n = 52; 73.2%). CONCLUSION PCD-CT acquisitions provided similar morphologic image quality and superior perfusion imaging at lower radiation doses. CLINICAL RELEVANCE STATEMENT The improvement in the overall quality of perfusion images at lower radiation doses opens the door for wider applications of lung perfusion imaging in clinical practice. KEY POINTS The speed of data acquisition with PCD-CT accounts for mild motion artifacts. Sharply delineated fissures are depicted on PCD-CT perfusion images. High-quality perfusion imaging was obtained with a 52% dose reduction.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France.
- ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, LILLE, France.
- IMALLIANCE-Haut-de-France, Valenciennes, France.
| | - Lucas Guiffault
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France
| | - Idir Oufriche
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France
| | - Alain Duhamel
- ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, LILLE, France
- Department of Biostatistics, University of Lille, CHU Lille, LILLE, France
| | - Thomas Flohr
- Department of Computed Tomography Research & Development, Siemens Healthineers AG, Forchheim, Germany
| | - Bernhard Schmidt
- Department of Computed Tomography Research & Development, Siemens Healthineers AG, Forchheim, Germany
| | - Jacques Remy
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France
- Department of Radiology, Valenciennes Regional Hospital, Valenciennes, France
| |
Collapse
|
2
|
Boktor RR, Lee ST, Bom HSH. Is it Possible to Monitor CTEPH without Ventilation Study? Nucl Med Mol Imaging 2024; 58:389-391. [PMID: 39635634 PMCID: PMC11612038 DOI: 10.1007/s13139-024-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/21/2024] [Accepted: 05/26/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Raef R. Boktor
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC 3084 Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC Australia
| | - Sze Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC 3084 Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC Australia
| | - Hee-Seung Henry Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeonnam, South Korea
| |
Collapse
|
3
|
Jeyin N, Desai SR, Padley SPG, Wechalekar K, Gregg S, Sousa T, Shah PL, Allinson JP, Hopkinson NS, Begum S, Jordan S, Kemp SV, Ridge CA. Dual-energy Computed Tomographic Pulmonary Angiography Accurately Estimates Lobar Perfusion Before Lung Volume Reduction for Severe Emphysema. J Thorac Imaging 2023; 38:104-112. [PMID: 36162074 DOI: 10.1097/rti.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess if dual-energy computed tomographic pulmonary angiography (DECTPA) derived lobar iodine quantification can provide an accurate estimate of lobar perfusion in patients with severe emphysema, and offer an adjunct to single-photon emission CT perfusion scintigraphy (SPECT-PS) in assessing suitability for lung volume reduction (LVR). MATERIALS AND METHODS Patients with severe emphysema (forced expiratory volume in 1 s <49% predicted) undergoing evaluation for LVR between May 2018 and April 2020 imaged with both SPECT-PS and DECTPA were included in this retrospective study. DECTPA perfused blood volume maps were automatically segmented and lobar iodine mass was estimated and compared with lobar technetium (Tc99m) distribution acquired with SPECT-PS. Pearson correlation and Bland-Altman analysis were used for intermodality comparison between DECTPA and SPECT-PS. Univariate and adjusted multivariate linear regression were modelled to ascertain the effect sizes of possible confounders of disease severity, sex, age, and body mass index on the relationship between lobar iodine and Tc99m values. Effective radiation dose and adverse reactions were recorded. RESULTS In all, 123 patients (64.5±8.8 y, 71 men; mean predicted forced expiratory volume in 1 s 32.1 ±12.7%,) were eligible for inclusion. There was a linear relationship between lobar perfusion values acquired using DECTPA and SPECT-PS with statistical significance ( P <0.001). Lobar relative perfusion values acquired using DECTPA and SPECT-PS had a consistent relationship both by linear regression and Bland-Altman analysis (mean bias, -0.01, mean r2 0.64; P <0.0001). Individual lobar comparisons demonstrated moderate correlation ( r =0.79, 0.78, 0.84, 0.78, 0.8 for the right upper, middle, lower, left upper, and lower lobes, respectively, P <0.0001). The relationship between lobar iodine and Tc99m values was not significantly altered after controlling for confounders including symptom and disease severity, age, sex, and body mass index. CONCLUSIONS DECTPA provides an accurate estimation of lobar perfusion, showing good agreement with SPECT-PS and could potentially streamline preoperative assessment for LVR.
Collapse
Affiliation(s)
| | - Sujal R Desai
- National Heart and Lung Institute, Imperial College London
- Departments of Imaging
| | - Simon P G Padley
- National Heart and Lung Institute, Imperial College London
- Departments of Imaging
| | | | | | | | - Pallav L Shah
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | - Nicholas S Hopkinson
- National Heart and Lung Institute, Imperial College London
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | | | - Samuel V Kemp
- National Heart and Lung Institute, Imperial College London
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Carole A Ridge
- National Heart and Lung Institute, Imperial College London
- Departments of Imaging
| |
Collapse
|
4
|
Si-Mohamed SA, Zumbihl L, Turquier S, Boccalini S, Mornex JF, Douek P, Cottin V, Boussel L. Lung Dual-Energy CT Perfusion Blood Volume as a Marker of Severity in Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel) 2023; 13:diagnostics13040769. [PMID: 36832256 PMCID: PMC9955200 DOI: 10.3390/diagnostics13040769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
In chronic thromboembolic pulmonary hypertension (CTEPH), assessment of severity requires right heart catheterization (RHC) through cardiac index (CI). Previous studies have shown that dual-energy CT allows a quantitative assessment of the lung perfusion blood volume (PBV). Therefore, the objective was to evaluate the quantitative PBV as a marker of severity in CTEPH. In the present study, thirty-three patients with CTEPH (22 women, 68.2 ± 14.8 years) were included from May 2017 to September 2021. Mean quantitative PBV was 7.6% ± 3.1 and correlated with CI (r = 0.519, p = 0.002). Mean qualitative PBV was 41.1 ± 13.4 and did not correlate with CI. Quantitative PBV AUC values were 0.795 (95% CI: 0.637-0.953, p = 0.013) for a CI ≥ 2 L/min/m2 and 0.752 (95% CI: 0.575-0.929, p = 0.020) for a CI ≥ 2.5 L/min/m2. In conclusion, quantitative lung PBV outperformed qualitative PBV for its correlation with the cardiac index and may be used as a non-invasive marker of severity in CTPEH patients.
Collapse
Affiliation(s)
- Salim A. Si-Mohamed
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
- Correspondence: ; Tel.: +33-04-7235-7335
| | - Léa Zumbihl
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
| | - Ségolène Turquier
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, 69677 Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon, 69007 Lyon, France
- ERN-LUNG, 69500 Bron, France
| | - Sara Boccalini
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Jean-Francois Mornex
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, 69677 Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon, 69007 Lyon, France
- ERN-LUNG, 69500 Bron, France
| | - Philippe Douek
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, 69677 Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon, 69007 Lyon, France
- ERN-LUNG, 69500 Bron, France
| | - Loic Boussel
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| |
Collapse
|
5
|
Ramirez-Suarez KI, Barrera CA, Otero HJ, Biko DM, States LJ, Servaes S, Zhu X, Davis JC, Piccione J, Rapp JB. Pilot study for comparative assessment of dual-energy computed tomography and single-photon emission computed tomography V/Q scanning for lung perfusion evaluation in infants. Pediatr Pulmonol 2022; 57:702-710. [PMID: 34914194 DOI: 10.1002/ppul.25788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/05/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate clinical applications of dual-energy computed tomography (DECT) in pediatric-specific lung diseases and compare ventilation and perfusion findings with those from single-photon emission computed tomography (SPECT-CT) V/Q. METHODS All patients at our institution who underwent exams using both techniques within a 3-month period were included in this study. Two readers independently described findings for DECT, and two other readers independently analyzed the SPECT-CT V/Q scan data. All findings were compared between readers and disagreements were reassessed and resolved by consensus. Inter-modality agreements are described throughout this study. RESULTS Eight patients were included for evaluation. The median age for DECT scanning was 3.5 months (IQR = 2). Five of these patients were scanned for both DECT and SPECT-CT V/Q studies the same day, and three had a time gap of 7, 65, and 94 days between studies. The most common indications were chronic lung disease (5/8; 63%) and pulmonary hypertension (6/8; 75%). DECT and SPECT-CT V/Q identified perfusion abnormalities in concordant lobes in most patients (7/8; 88%). In one case, atelectasis limited DECT perfusion assessment. Three patients ultimately underwent lobectomy with corresponding perfusion abnormalities identified by all reviewers on both DECT and SPECT-CT V/Q in all resected lobes. CONCLUSION DECT is a feasible technique that could be considered as an alternative for SPECT-CT V/Q for lung perfusion evaluation in infants.
Collapse
Affiliation(s)
- Karen I Ramirez-Suarez
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian A Barrera
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sabah Servaes
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, West Virginia University Medicine Children's Hospital, Morgantown, West Virginia, USA
| | - Xiaowei Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James C Davis
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph Piccione
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jordan B Rapp
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Kroeger JR, Zöllner J, Gerhardt F, Rosenkranz S, Gertz RJ, Kerszenblat S, Pahn G, Maintz D, Bunck AC. Detection of patients with chronic thromboembolic pulmonary hypertension by volumetric iodine quantification in the lung-a case control study. Quant Imaging Med Surg 2022; 12:1121-1129. [PMID: 35111609 DOI: 10.21037/qims-21-229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023]
Abstract
Background To evaluate whether volumetric iodine quantification of the lung allows for the automatic identification of patients with chronic thromboembolic pulmonary hypertension (CTEPH) and whether the extent of pulmonary malperfusion correlates with invasive hemodynamic parameters. Methods Retrospective data base search identified 30 consecutive patients with CTEPH who underwent CT pulmonary angiography (CTPA) on a spectral-detector CT scanner. Thirty consecutive patients who underwent an identical CT examination for evaluation of suspected acute pulmonary embolism and had no signs of pulmonary embolism or PH, served as control cohort. Lungs were automatically segmented for all patients and normal and malperfused volumes were segmented based on iodine density thresholds. Results were compared between groups. For correlation analysis between the extent of malperfused volume and mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) 3 patients were excluded because of a time span of more than 30 days between CTPA and right heart catheterization. Results Patients with CTEPH had a higher percentage of malperfused lung compared to controls (43.25%±24.72% vs. 21.82%±20.72%; P=0.001) and showed reduced mean iodine density in malperfused and normal-perfused lung areas, as well as in the vessel volume. Controls showed a left-tailed distribution of iodine density in malperfused lung areas while patients with CTEPH had a more symmetrical distribution (Skew: -0.382±0.435 vs. -0.010±0.396; P=0.004). Patients with CTEPH showed a significant correlation between the percentage of malperfused lung volume and the PVR (r=0.57, P=0.001). Conclusions Volumetric iodine quantification helps to identify patients with CTEPH by showing increased areas of malperfusion. The extent of malperfusion might provide a measurement for disease severity in patients with CTEPH.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.,Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jakob Zöllner
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Gerhardt
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman Johannes Gertz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - David Maintz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Pinilo J, Hutt A, Labreuche J, Faivre JB, Flohr T, Schmidt B, Duhamel A, Remy J, Remy-Jardin M. Evaluation Of a New Reconstruction Technique for Dual-Energy (DECT) Lung Perfusion: Preliminary Experience In 58 Patients. Acad Radiol 2022; 29 Suppl 2:S202-S214. [PMID: 34446359 DOI: 10.1016/j.acra.2021.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare dual-energy (DE) lung perfused blood volume generated by subtraction of virtual monoenergetic images (Lung Mono) with images obtained by three-compartment decomposition (Lung PBV). MATERIAL AND METHODS The study included 58 patients (28 patients with and 30 patients without PE) with reconstruction of Lung PBV images (i.e., the reference standard) and Lung Mono images. The inter-technique comparison was undertaken at a patient and segment level. RESULTS The distribution of scores of subjective image noise (patient level) significantly differed between the two reconstructions (p<0.0001), with mild noise in 58.6% (34/58) of Lung Mono images vs 25.9% (15/58) of Lung PBV images. Detection of perfusion defects (segment level) was concordant in 1104 segments (no defect: n=968; defects present: n=138) and discordant in 2 segments with a PE-related defect only depicted on Lung Mono images. Among the 28 PE patients, the distribution of gradient of attenuation between perfused areas and defects was significantly higher on Lung Mono images compared to Lung PBV (median= 73.5 HU (QI=65.0; Q3=86.0) vs 24.5 HU (22.0; 30.0); p<0.0001). In all patients, fissures were precisely identified in 77.6% of patients (45/58) on Lung Mono images while blurred (30/58; 51.7%) or not detectable (28/58; 48.3%) on Lung PBV images. CONCLUSION Lung Mono perfusion imaging allows significant improvement in the overall image quality and improved detectability of PE-type perfusion defects.
Collapse
|
8
|
Stam K, Clauss S, Taverne YJHJ, Merkus D. Chronic Thromboembolic Pulmonary Hypertension - What Have We Learned From Large Animal Models. Front Cardiovasc Med 2021; 8:574360. [PMID: 33937352 PMCID: PMC8085273 DOI: 10.3389/fcvm.2021.574360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic thrombo-embolic pulmonary hypertension (CTEPH) develops in a subset of patients after acute pulmonary embolism. In CTEPH, pulmonary vascular resistance, which is initially elevated due to the obstructions in the larger pulmonary arteries, is further increased by pulmonary microvascular remodeling. The increased afterload of the right ventricle (RV) leads to RV dilation and hypertrophy. This RV remodeling predisposes to arrhythmogenesis and RV failure. Yet, mechanisms involved in pulmonary microvascular remodeling, processes underlying the RV structural and functional adaptability in CTEPH as well as determinants of the susceptibility to arrhythmias such as atrial fibrillation in the context of CTEPH remain incompletely understood. Several large animal models with critical clinical features of human CTEPH and subsequent RV remodeling have relatively recently been developed in swine, sheep, and dogs. In this review we will discuss the current knowledge on the processes underlying development and progression of CTEPH, and on how animal models can help enlarge understanding of these processes.
Collapse
Affiliation(s)
- Kelly Stam
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany.,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
9
|
Si-Mohamed S, Moreau-Triby C, Tylski P, Tatard-Leitman V, Wdowik Q, Boccalini S, Dessouky R, Douek P, Boussel L. Head-to-head comparison of lung perfusion with dual-energy CT and SPECT-CT. Diagn Interv Imaging 2020; 101:299-310. [PMID: 32173289 DOI: 10.1016/j.diii.2020.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the quantitative and qualitative lung perfusion data acquired with dual energy CT (DECT) to that acquired with a large field-of-view cadmium-zinc-telluride camera single-photon emission CT coupled to a CT system (SPECT-CT). MATERIALS AND METHODS A total of 53 patients who underwent both dual-layer DECT angiography and perfusion SPECT-CT for pulmonary hypertension or pre-operative lobar resection surgery were retrospectively included. There were 30 men and 23 women with a mean age of 65.4±17.5 (SD)years (range: 18-88years). Relative lobar perfusion was calculated by dividing the amount (of radiotracer or iodinated contrast agent) per lobe by the total amount in both lungs. Linear regression, Bland-Altman analysis, and Pearson's correlation coefficient were also calculated. Kappa test was used to test agreements in morphology and severity of perfusion defects assessed on SPECT-CT and on DECT iodine maps with a one-month interval. Wilcoxon rank sum test was used to compare the sharpness of perfusion defects and radiation dose among modalities. RESULTS Strong correlations for relative lobar perfusion using linear regression analysis and Pearson's correlation coefficient (r=0.93) were found. Bland-Altman analysis revealed a -0.10 bias, with limits of agreement between [-6.01; 5.81]. With respect to SPECT- CT as standard of reference, the sensitivity, specificity, PPV, NPV, accuracy for lobar perfusion defects were 89.4% (95%
CI: 82.6-93.4%), 96.5% (95% CI: 92.1-98.5%), 95.6% (95% CI:
90.9-97.8%), 91.4% (95% CI: 85.6-94.9%) and 93.0% (95% CI:
87.6-96.1%) respectively. High level of agreement was found for morphology and severity of perfusion defects between modalities (Kappa=0.84 and 0.86 respectively) and on DECT images among readers (Kappa=0.94 and 0.89 respectively). A significantly sharper delineation of perfusion defects was found on DECT images (P<0.0001) using a significantly lower equivalent dose of 4.1±2.3 (SD) mSv (range: 1.9-11.85mSv) compared to an equivalent dose of 5.3±1.1 (SD) mSv (range: 2.8-7.3mSv) for SPECT-CT, corresponding to a 21.2% dose reduction (P=0.0004). CONCLUSION DECT imaging shows strong quantitative correlations and qualitative agreements with SPECT-CT for the evaluation of lung perfusion.
Collapse
Affiliation(s)
- S Si-Mohamed
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France.
| | - C Moreau-Triby
- Department of Nuclear Medicine, Hospices Civils de Lyon, 69500 Bron, France
| | - P Tylski
- Medical Physics and Radioprotection, Hospices Civils de Lyon, 69500 Bron, France
| | - V Tatard-Leitman
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Q Wdowik
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - S Boccalini
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - R Dessouky
- Department of Radiology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - P Douek
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - L Boussel
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| |
Collapse
|
10
|
Renapurkar RD, Bolen MA, Shrikanthan S, Bullen J, Karim W, Primak A, Heresi GA. Comparative assessment of qualitative and quantitative perfusion with dual-energy CT and planar and SPECT-CT V/Q scanning in patients with chronic thromboembolic pulmonary hypertension. Cardiovasc Diagn Ther 2018; 8:414-422. [PMID: 30214856 DOI: 10.21037/cdt.2018.05.07] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The purpose of this study was to compare the qualitative and quantitative assessment of perfusion on dual-energy CT (DECT) and planar and single photon emission computed tomography (SPECT)-CT V/Q scanning in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Methods Nineteen patients with known CTEPH underwent both DECT and SPECT-CT V/Q scanning. Sixteen of these patients underwent planar V/Q imaging concurrently. Two readers independently graded DECT-perfused blood volume (PBV) defects on a four-point scale (0= normal, 1= mild <25%, 2= moderate 25-50%, 3= severe >50%). A grade was given for each lung lobe and for each of 18 lung segments. One reader graded the SPECT-CT images similarly. Quantitative measurements of lung perfusion were calculated with DECT and planar V/Q scanning for 16 of these patients. Results The inter-reader agreement on DECT was strong with agreement in 85% (258/304) of segments (kappa =0.86) and 84% (80/95) of lobes (kappa =0.82). The inter-modality agreement between DECT and SPECT-CT was lower. Readers 1 and 3 agreed in only 34% (103/304) of segments (kappa =0.25) and 33% (31/94) of lobes (kappa =0.22). Agreement between readers 2 and 3 was similar. Correlation between quantitative measurements with DECT and planar V/Q imaging was poor and ranged from 0.01 to 0.45. Conclusions Inter-observer agreement in subjective grading of PBV maps is excellent. However, inter-modality agreement between DECT and SPECT-CT is modest. Automated quantification values of PBV maps correlate poorly with established tools like planar V/Q imaging. These differences need to be kept in mind during clinical decision making.
Collapse
Affiliation(s)
| | - Michael A Bolen
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.,Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jennifer Bullen
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Wadih Karim
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Masy M, Giordano J, Petyt G, Hossein-Foucher C, Duhamel A, Kyheng M, De Groote P, Fertin M, Lamblin N, Bervar JF, Remy J, Remy-Jardin M. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 2018; 28:5100-5110. [PMID: 29846802 DOI: 10.1007/s00330-018-5467-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To evaluate the concordance between DECT perfusion and ventilation/perfusion (V/Q) scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). METHODS Eighty patients underwent V/Q scintigraphy and DECT perfusion on a 2nd- and 3rd-generation dual-source CT system. The imaging criteria for diagnosing CTEPH relied on at least one segmental triangular perfusion defect on DECT perfusion studies and V/Q mismatch on scintigraphy examinations. RESULTS Based on multidisciplinary expert decisions that did not include DECT perfusion, 36 patients were diagnosed with CTEPH and 44 patients with other aetiologies of PH. On DECT perfusion studies, there were 35 true positives, 6 false positives and 1 false negative (sensitivity 0.97, specificity 0.86, PPV 0.85, NPV 0.97). On V/Q scans, there were 35 true positives and 1 false negative (sensitivity 0.97, specificity 1, PPV 1, NPV 0.98). There was excellent agreement between CT perfusion and scintigraphy in diagnosing CTEPH (kappa value 0.80). Combined information from DECT perfusion and CT angiographic images enabled correct reclassification of the 6 false positives and the unique false negative case of DECT perfusion. CONCLUSION There is excellent agreement between DECT perfusion and V/Q scintigraphy in diagnosing CTEPH. The diagnostic accuracy of DECT perfusion is reinforced by the morpho-functional analysis of data sets. KEY POINTS • Chronic thromboembolic pulmonary hypertension (CTEPH) is potentially curable by surgery. • The triage of patients with pulmonary hypertension currently relies on scintigraphy. • Dual-energy CT (DECT) can provide standard diagnostic information and lung perfusion from a single acquisition. • There is excellent agreement between DECT perfusion and scintigraphy in separating CTEPH and non-CTEPH patients.
Collapse
Affiliation(s)
- Matthieu Masy
- Department of Thoracic Imaging, Calmette Hospital (EA 2694); CHRU et Université de Lille 2 Nord de France, F-59000, Lille, France
| | - Jessica Giordano
- Department of Thoracic Imaging, Calmette Hospital (EA 2694); CHRU et Université de Lille 2 Nord de France, F-59000, Lille, France
| | - Grégory Petyt
- Department of Nuclear Medicine; Salengro Hospital, University of Lille, CHU Lille, F-59000, Lille, France
| | - Claude Hossein-Foucher
- Department of Nuclear Medicine; Salengro Hospital, University of Lille, CHU Lille, F-59000, Lille, France
| | - Alain Duhamel
- Department of Biostatistics (EA 2694), CHRU et Université de Lille 2 Nord de France, F-59000, Lille, France
| | - Maeva Kyheng
- Department of Biostatistics (EA 2694), CHRU et Université de Lille 2 Nord de France, F-59000, Lille, France
| | - Pascal De Groote
- Department of Cardiology; Cardiology Hospital, University of Lille, CHU Lille, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Marie Fertin
- Department of Cardiology; Cardiology Hospital, University of Lille, CHU Lille, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Nicolas Lamblin
- Department of Cardiology; Cardiology Hospital, University of Lille, CHU Lille, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Jean-François Bervar
- Department of Pulmonology, Calmette Hospital; University of Lille, CHU Lille, F-59000, Lille, France
| | - Jacques Remy
- Department of Thoracic Imaging, Calmette Hospital (EA 2694); CHRU et Université de Lille 2 Nord de France, F-59000, Lille, France
| | - Martine Remy-Jardin
- Department of Thoracic Imaging, Calmette Hospital (EA 2694); CHRU et Université de Lille 2 Nord de France, F-59000, Lille, France.
| |
Collapse
|
12
|
Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits. Eur Radiol 2016; 27:1377-1385. [PMID: 27510627 DOI: 10.1007/s00330-016-4512-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/16/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). METHODS Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. RESULTS A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p < 0.001) and accuracy (p < 0.01), but lower specificity (p < 0.001), were found for lung PBV compared with CTPA. Dual-energy CT can detect PFE earlier than CTPA (all p < 0.01). CONCLUSION Dual-energy CT provided higher sensitivity and accuracy in the detection of PFE as well as earlier detection compared with conventional CTPA in this animal model study. KEY POINTS • Fat embolism occurs commonly in patients with traumatic bone injury. • Dual-energy CT improves diagnostic performance for pulmonary fat embolism detection. • Dual-energy CT can detect pulmonary fat embolism earlier than CTPA.
Collapse
|