1
|
Fujita N, Ushijima Y, Itoyama M, Okamoto D, Ishimatsu K, Tabata K, Itoh S, Ishigami K. Value of gadoxetic acid-enhanced MR imaging for preoperative prediction of future liver regeneration after hemihepatectomy. Jpn J Radiol 2024; 42:1439-1447. [PMID: 39150642 PMCID: PMC11588868 DOI: 10.1007/s11604-024-01629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Liver resection is currently considered the most effective treatment for patients with liver cancer. To the best of our knowledge, no study has investigated the association between gadoxetic acid-enhanced magnetic resonance imaging (MRI) findings and liver regeneration in patients who underwent hemihepatectomy. We aimed to clarify the relationship between the signal intensity (SI) of the liver parenchyma on gadoxetic acid-enhanced MRI and the degree of liver regeneration in patients who underwent hemihepatectomy. MATERIALS AND METHODS Forty-one patients who underwent gadoxetic acid-enhanced MRI before hemihepatectomy were enrolled. We calculated the liver-to-erector spinae muscle SI ratio (LMR) in the hepatobiliary phase and the precontrast images. ΔLMR was calculated using the following equation: ΔLMR = (LMR in the hepatobiliary phase-LMR in the precontrast image)/LMR in the precontrast image. The preoperative and postoperative remnant liver volumes (LVs) were calculated using CT volumetry. We calculated the resection rate (RR) and liver regeneration index (LRI) using the following formulas: RR = Resected LV/Total LV × 100 and LRI = (postoperative remnant LV-preoperative remnant LV)/preoperative remnant LV × 100. The relationships among LRI, imaging, and clinicopathological factors were analyzed. RESULTS Univariate analysis showed RR and ΔLMR showed a positive correlation with LRI (ρ = 0.4133, p = 0.0072 and ρ = 0.7773, p < 0.001, respectively). Spleen volume showed a negative correlation with LRI (ρ = -0.3138, p = 0.0486). Stepwise multiple regression analysis showed ΔLMR and RR were independently correlated with LRI (β coefficient = 44.8771, p = 0.0198 and β coefficient = 1.9653, p < 0.001, respectively). CONCLUSION ΔLMR may serve as a preoperative predictor of liver regeneration in patients undergoing hemihepatectomy.
Collapse
Affiliation(s)
- Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Itoyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Okamoto
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Ishimatsu
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kosuke Tabata
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinji Itoh
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Nishio K, Komatsu S, Sofue K, Kido M, Kuramitsu K, Gon H, Fukushima K, Urade T, Yanagimoto H, Toyama H, Fukumoto T. A Novel Method Using Gadolinium-Ethoxybenzyl Diethylenetriamine Pentaacetate Acid-Enhanced Magnetic Resonance Imaging for Predicting Post-Hepatectomy Liver Failure in Hepatocellular Carcinoma Patients with a Major Portal Vein Tumor Thrombus. Dig Surg 2024; 41:30-36. [PMID: 38219712 DOI: 10.1159/000536157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION The usefulness of gadolinium-ethoxybenzyl diethylenetriamine pentaacetate acid-enhanced magnetic resonance imaging (EOB-MRI) in assessing the functional future remnant liver volume (fFRLV) to predict post-hepatectomy liver failure (PHLF) has been previously reported. Herein, we evaluated the efficacy of this technique in patients with hepatocellular carcinoma (HCC) with a major portal vein tumor thrombus (PVTT). METHODS This study included 21 patients with PVTT in the ipsilateral first-order branch (Vp3) and 30 patients with PVTT in the main trunk/contralateral branch (Vp4). To evaluate fFRLV, the signal intensity (SI) of the remnant liver was determined on T1-weighted images, using both conventional and newly developed methods. The fFRLV was calculated using the SI of the remnant liver and muscle, remnant liver volume, and body surface area. Preoperative factors predicting PHLF (≥grade B) in HCC patients with Vp3/4 PVTT were evaluated. RESULTS In the Vp3 group, we found fFRLV area under the receiver-operating characteristic curves (AUCs) above 0.70 (AUC = 0.875, 0.750) using EOB-MRI results calculated using either the plot or whole method. None of the parameters in the Vp4 group had an AUC greater than 0.70. CONCLUSION The fFRLV calculated by EOB-MRI using the whole method can be as useful as the conventional method in predicting PHLF (≥grade B) for HCC patients with Vp3 PVTT.
Collapse
Affiliation(s)
- Kosuke Nishio
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kido
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaori Kuramitsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidetoshi Gon
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Fukushima
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Urade
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Yanagimoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Milana F, Famularo S, Diana M, Mishima K, Reitano E, Cho HD, Kim KH, Marescaux J, Donadon M, Torzilli G. How Much Is Enough? A Surgical Perspective on Imaging Modalities to Estimate Function and Volume of the Future Liver Remnant before Hepatic Resection. Diagnostics (Basel) 2023; 13:2726. [PMID: 37685264 PMCID: PMC10486462 DOI: 10.3390/diagnostics13172726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Liver resection is the first curative option for most hepatic primary and secondary malignancies. However, post-hepatectomy liver failure (PHLF) still represents a non-negligible postoperative complication, embodying the most frequent cause of hepatic-related mortality. In the absence of a specific treatment, the most effective way to deal with PHLF is its prevention through a careful preoperative assessment of future liver remnant (FLR) volume and function. Apart from the clinical score and classical criteria to define the safe limit of resectability, new imaging modalities have shown their ability to assist surgeons in planning the best operative strategy with a precise estimation of the FLR amount. New technologies leading to liver and tumor 3D reconstruction may guide the surgeon along the best resection planes combining the least liver parenchymal sacrifice with oncological appropriateness. Integration with imaging modalities, such as hepatobiliary scintigraphy, capable of estimating total and regional liver function, may bring about a decrease in postoperative complications. Magnetic resonance imaging with hepatobiliary contrast seems to be predominant since it simultaneously integrates hepatic function and volume information along with a precise characterization of the target malignancy.
Collapse
Affiliation(s)
- Flavio Milana
- Department of Biomedical Sciences, Humanitas University, Via Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- Division of Hepatobiliary and General Surgery, Department of Hepatobiliary and General Surgery, Humanitas Research Hospital-IRCCS, Humanitas University, Via Manzoni 56, 20089 Rozzano, MI, Italy
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Simone Famularo
- Department of Biomedical Sciences, Humanitas University, Via Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- Division of Hepatobiliary and General Surgery, Department of Hepatobiliary and General Surgery, Humanitas Research Hospital-IRCCS, Humanitas University, Via Manzoni 56, 20089 Rozzano, MI, Italy
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Michele Diana
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- Photonics Instrumentation for Health, iCube Laboratory, University of Strasbourg, 67000 Strasbourg, France
- Department of General, Digestive and Endocrine Surgery, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Kohei Mishima
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Elisa Reitano
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Hwui-Dong Cho
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ki-Hun Kim
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jacques Marescaux
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, NO, Italy
- Department of General Surgery, University Maggiore Hospital, 28100 Novara, NO, Italy
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Via Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- Division of Hepatobiliary and General Surgery, Department of Hepatobiliary and General Surgery, Humanitas Research Hospital-IRCCS, Humanitas University, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
4
|
Wang Q, Kesen S, Liljeroth M, Nilsson H, Zhao Y, Sparrelid E, Brismar TB. Quantitative evaluation of liver function with gadoxetic acid enhanced MRI: Comparison among signal intensity-, T1-relaxometry-, and dynamic-hepatocyte-specific-contrast-enhanced MRI- derived parameters. Scand J Gastroenterol 2022; 57:705-712. [PMID: 35108168 DOI: 10.1080/00365521.2022.2032321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
AIMS Three types of gadoxetic acid enhanced MRI parameters have been proposed to quantify liver function. However, until now there is no consensus on which one that has the greatest potential for use in clinical practice. This study was conducted to compare the efficacy of three types of gadoxetic acid enhanced MR parameters for quantitative assessment of liver function. METHODS Imaging data of 10 patients with chronic liver disease and 20 healthy volunteers were analyzed. Parameters based on signal intensity(SI), T1 changes or dynamic-hepatocyte-specific-contrast-enhancement MR were calculated. Their mutual correlations, discriminatory capacity between cirrhotic and healthy liver and correlations with Child-Pugh score and Model for end-stage liver-disease (MELD) were estimated. RESULTS The strongest correlations were observed between relative enhancement of the liver and T1 time at 20 min after contrast agent injection, and between liver-spleen contrast ratio at 20 min after contrast agent injection and hepatic uptake rate (|r|> 0.90, p < .05, both). All parameters but input-relative blood flow (p = 0.17) were significantly different between patient and control group (p < .05), with AUROCs of liver-to-muscle ratio (LMR), increase of LMR and hepatic extraction fraction greater than 0.90 (p < .05). Liver-to-spleen ratio, LMR and hepatic uptake index presented a strong correlation with Child-Pugh score and MELD (|r|> 0.8, p < .05). CONCLUSION Simple SI-based parameters were as good as more complex parameters in evaluating liver function at gadoxetic acid enhanced MR. In clinical routine LMR seems to be the easiest-to-use parameter for quantitative evaluation of liver function.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Savas Kesen
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Maria Liljeroth
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Nilsson
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ying Zhao
- Experimental Cancer Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
5
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
MRI-Based Quantitation of Hepatic Steatosis Does Not Predict Hypertrophy Rate after Portal Vein Embolization in Patients with Colorectal Liver Metastasis and Normal to Moderately Elevated Fat Fraction. J Clin Med 2021; 10:jcm10092003. [PMID: 34067008 PMCID: PMC8125629 DOI: 10.3390/jcm10092003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to correlate the pre-procedural magnetic-resonance-imaging-based hepatic fat fraction (hFF) with the degree of hypertrophy after portal vein embolization (PVE) in patients with colorectal cancer liver metastases (CRCLM). Between 2011 November and 2020 February, 68 patients with CRCLM underwent magnetic resonance imaging (MRI; 1.5 Tesla) of the liver before PVE. Using T1w chemical shift imaging (DUAL FFE), the patients were categorized as having a normal (<5%) or an elevated (>5%) hFF. The correlation of hFF, age, gender, initial tumor mass, history of chemotherapy, degree of liver hypertrophy, and kinetic growth rate after PVE was investigated using multiple regression analysis and Spearman’s test. A normal hFF was found in 43/68 patients (63%), whereas 25/68 (37%) patients had an elevated hFF. The mean hypertrophy and kinetic growth rates in patients with normal vs. elevated hFF were 24 ± 31% vs. 28 ± 36% and 9 ± 9 % vs. 8 ± 10% (p > 0.05), respectively. Spearman’s test showed no correlation between hFF and the degree of hypertrophy (R = −0.04). Multivariable analysis showed no correlation between hFF, history of chemotherapy, age, baseline tumor burden, or laterality of primary colorectal cancer, and only a poor inverse correlation between age and kinetic growth rate after PVE. An elevated hFF in a pre-procedural MRI does not correlate with the hypertrophy rate after PVE and should therefore not be used as a contraindication to the procedure in patients with CRCLM.
Collapse
|
7
|
Tsuruga Y, Kamiyama T, Kamachi H, Orimo T, Shimada S, Nagatsu A, Asahi Y, Sakamoto Y, Kakisaka T, Taketomi A. Functional transition: Inconsistently parallel to the increase in future liver remnant volume after preoperative portal vein embolization. World J Gastrointest Surg 2021; 13:153-163. [PMID: 33643535 PMCID: PMC7898185 DOI: 10.4240/wjgs.v13.i2.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Preoperative portal vein embolization (PVE) is a widely used strategy to enable major hepatectomy in patients with insufficient liver remnant. PVE induces hypertrophy of the future liver remnant (FLR) and a shift of the functional reserve to the FLR. However, whether the increase of the FLR volume (FLRV) corresponds to the functional transition after PVE remains unclear.
AIM To investigate the sequential relationship between the increase in FLRV and functional transition after preoperative PVE using 3-dimensional (3D) computed tomography (CT) and 99mTc-galactosyl-human serum albumin (99mTc-GSA) single-photon emission computed tomography (SPECT) fusion images.
METHODS Thirty-three patients who underwent major hepatectomy following PVE at the Department of Gastroenterological Surgery I, Hokkaido University Hospital between October 2013 and March 2018 were enrolled. Three-phase dynamic multidetector CT and 99mTc-GSA SPECT scintigraphy were performed at pre-PVE, and at 1 and 2 wk after PVE; 3D 99mTc-GSA SPECT CT-fused images were constructed from the Digital Imaging and Communications in Medicine data using 3D image analysis system. Functional FLRV (FFLRV) was defined as the total liver volume × (FLR volume counts/total liver volume counts) on the 3D 99mTc-GSA SPECT CT-fused images. The calculated FFLRV was compared with FLRV.
RESULTS FFLRV increased by a significantly larger extent than FLRV at 1 and 2 wk after PVE (P < 0.01). The increase in FFLRV and FLRV was 55.1% ± 41.6% and 26.7% ± 17.8% (P < 0.001), respectively, at 1 wk after PVE, and 64.2% ± 33.3% and 36.8% ± 18.9% (P < 0.001), respectively, at 2 wk after PVE. In 3 of the 33 patients, FFLRV levels decreased below FLRV at 2 wk. One of the three patients showed rapidly progressive fatty changes in FLR. The biopsy at 4 wk after PVE showed macro- and micro-vesicular steatosis of more than 40%, which improved to 10%. Radical resection was performed at 13 wk after PVE. The patient recovered uneventfully without any symptoms of pos-toperative liver failure.
CONCLUSION The functional transition lagged behind the increase in FLRV after PVE in some cases. Evaluating both volume and function is needed to determine the optimal timing of hepatectomy after PVE.
Collapse
Affiliation(s)
- Yosuke Tsuruga
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shingo Shimada
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yoh Asahi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuzuru Sakamoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
8
|
Syed M, Shah J, Montazeri SA, Grajo JR, Geller B, Toskich B. Analysis of dynamic hepatobiliary contrast-enhanced MRI signal intensity after Yttrium-90 radioembolization with glass microspheres for the treatment of hepatocellular carcinoma. Abdom Radiol (NY) 2020; 46:2182-2187. [DOI: 10.1007/s00261-020-02855-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
|
9
|
Tomassini F, Giglio MC, De Simone G, Montalti R, Troisi RI. Hepatic function assessment to predict post-hepatectomy liver failure: what can we trust? A systematic review. Updates Surg 2020; 72:925-938. [PMID: 32749596 DOI: 10.1007/s13304-020-00859-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Post hepatectomy liver failure (PHLF) could occur even though an adequate liver volume is preserved. Liver function is not strictly related to the volume and the necessity to pre-operatively predict the future liver remnant (FLR) function is emerging, together with the wide spreading of techniques, aiming to optimize the FLR. The aim of this study was to systematically review all the available tests, to pre-operatively assess the liver function and to estimate the risk of PHLF. A systematic literature research of Medline, Embase, Scopus was performed in accordance to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, to identify all the studies available for pre-operative liver function tests to assess the risk of PHLF and/or complications. From the 1122 references retrieved, 79 were included in the review. Dynamic functional tests, such as indocyanine green test (ICG), could evaluate only global liver function, with no definition of functional capacity of the remnant. Magnetic resonance imaging (MRI) with liver-specific contrast agents enables both liver function and volume evaluation; the absence of ionizing radiation showed a better patient's compliance. Nuclear imaging studies as hepatobiliary scintigraphy (HBS) present the unique ability to allow a precise evaluation of the segmental liver function of the remnant liver. Liver volume could overestimate liver function. Several liver function tests are available to evaluate the risk of PHLF in the pre-operative setting. However, no single test alone could accurately predict PHLF. Pre-operative combination between a dynamic quantitative test, such as ICG, with MRI or HBS, should enable a more complete functional evaluation. Functional tests to predict PHLF should be chosen according to patient's characteristics, disease, and center experience.
Collapse
Affiliation(s)
- Federico Tomassini
- Department of Human Structure and Repair, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Mariano C Giglio
- Division of HPB, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe De Simone
- Division of HPB, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Naples, Via S. Pansini 5, 80131, Naples, Italy.,Department of Public Health, Federico II University Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Roberto Montalti
- Division of HPB, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Naples, Via S. Pansini 5, 80131, Naples, Italy.,Department of Public Health, Federico II University Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Roberto I Troisi
- Department of Human Structure and Repair, Faculty of Medicine, Ghent University, Ghent, Belgium. .,Division of HPB, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Naples, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
10
|
Wirsching A, Eberhardt C, Wurnig MC, Boss A, Lesurtel M. Transient steatosis assessed by magnetic resonance imaging predicts outcome after extended hepatectomy in mice. Am J Surg 2018; 216:658-665. [PMID: 30064726 DOI: 10.1016/j.amjsurg.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/19/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE AND OBJECTIVES Posthepatectomy liver failure (PHLF) remains challenging to diagnose and difficult to treat. The extent of transient regeneration-associated steatosis (TRAS) differs between successful liver regeneration and PHLF. This study aims to quantify TRAS by magnetic resonance imaging (MRI) after hepatectomy in mice. MATERIALS AND METHODS Mice (C57BL/6) underwent either extended hepatectomy (EH) or standard hepatectomy (SH). Serial MRI on postoperative days 1-7 was used to compare TRAS and liver remnant growth between groups. Survival was also assessed. RESULTS EH was associated with decreased survival and impaired proliferation when compared to SH (p = 0.02 and p = 0.03). MRI showed increased TRAS 48 h after EH compared to SH (11.8 ± 6% vs. 4.3 ± 2%, p < 0.001). Compared to EH survivors, death after EH was associated with increased TRAS 48 h postoperatively (16.4 ± 6% vs. 9.2 ± 5%, p = 0.02). CONCLUSIONS EH is associated with increased TRAS and inferior outcomes when compared to SH. MRI may help to predict PHLF after hepatectomy.
Collapse
Affiliation(s)
- Andrea Wirsching
- Swiss Hepato-Pancreatico-Biliary and Transplantation Center, Department of Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Christian Eberhardt
- Institute for Diagnosic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Moritz C Wurnig
- Institute for Diagnosic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Andreas Boss
- Institute for Diagnosic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Mickaël Lesurtel
- Swiss Hepato-Pancreatico-Biliary and Transplantation Center, Department of Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
11
|
Zhou ZP, Long LL, Qiu WJ, Cheng G, Huang LJ, Yang TF, Huang ZK. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla. BMC Med Imaging 2017; 17:20. [PMID: 28249571 PMCID: PMC5333450 DOI: 10.1186/s12880-017-0192-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Background Assessing the liver function provides valuable information to evaluate surgical risk and plan accordingly. Current studies focus on whole liver function evaluation. However, assessment of segmental liver function is equally important in the clinical practice. The purpose of this study was to investigate whether Gd-EOB-DTPA-enhanced MRI can evaluate the liver function of each segment by using T1 mapping at 3 Tesla MRI. Methods One hundred three patients were classified into one of 4 groups: a normal liver function (NLF) group (n = 38), a liver cirrhosis with Child-Pugh A (LCA) group (n = 33), a liver cirrhosis with Child-Pugh B (LCB) group (n = 21), and a liver cirrhosis with Child-Pugh C (LCC) group (n = 11). All patients underwent Gd-EOB-DTPA-enhanced MRI scans. T1 relaxation times were measured on the liver superimposing T1 mapping images. Reduction rate (△%) of T1 relaxation time of the liver parenchyma were calculated. Results After 20 min of Gd-EOB-DTPA enhancement, the T1 relaxation time of all liver segments in the LCC group were different from those in all the other groups, and more liver segments from the LCB and LCA groups different from the NLF group (p < 0.05). For the LCB group, the areas under the receiver operating characteristic curves (AUCs) of different liver segments for hepatobiliary phase (HBP) were 0.654-0.904 on T1 relaxation time, and 0.709-0.905 on △%. For the LCC group, the AUCs of different liver segments for HBP were 0.842–0.997 on T1 relaxation time, and 0.887–0.990 on △%. Conclusions For LCB patients, segmental liver function evaluation is possible using Gd-EOB-DTPA-enhanced MRI T1 mapping. For LCC patients, all liver segments can be used to evaluate liver function and both T1 relaxation time and the △% of T1 relaxation time have good diagnostic performance. Electronic supplementary material The online version of this article (doi:10.1186/s12880-017-0192-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Peng Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Wei-Jia Qiu
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Ge Cheng
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Li-Juan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Teng-Fei Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhong-Kui Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
12
|
Ba-Ssalamah A, Bastati N, Wibmer A, Fragner R, Hodge JC, Trauner M, Herold CJ, Bashir MR, Van Beers BE. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: Where are we? J Magn Reson Imaging 2016; 45:646-659. [PMID: 27862590 DOI: 10.1002/jmri.25518] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
MRI has emerged as the most comprehensive noninvasive diagnostic tool for focal liver lesions and diffuse hepatobiliary disorders. The introduction of hepatobiliary contrast agents, most notably gadoxetic acid (GA), has expanded the role of MRI, particularly in the functional imaging of chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). GA-enhanced MRI (GA-MRI) may help to distinguish between the two subgroups of NAFLD, simple steatosis and nonalcoholic steatohepatitis. Furthermore, GA-MRI can be used to stage fibrosis and cirrhosis, predict liver transplant graft survival, and preoperatively estimate the risk of liver failure should major resection be undertaken. The amount of GA uptake can be estimated, using static images, by the relative liver enhancement, hepatic uptake index, and relaxometry of T1-mapping during the hepatobiliary phase. On the contrary, the hepatic extraction fraction and liver perfusion can be measured on dynamic imaging. Importantly, there is currently no clear consensus as to which of these MR-derived parameters is the most suitable for assessing liver dysfunction. This review article aims to describe the current role of GA-enhanced MRI in quantifying liver function, primarily in diffuse hepatobiliary disorders. LEVEL OF EVIDENCE 3 J. Magn. Reson. Imaging 2017;45:646-659.
Collapse
Affiliation(s)
- Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Nina Bastati
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, General Hospital of Vienna (AKH), Austria
| | - Andreas Wibmer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Romana Fragner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, General Hospital of Vienna (AKH), Austria
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Mustafa R Bashir
- Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA.,Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, UMR 1149, INSERM - University Paris Diderot and Department of Radiology, University Hospital Paris Nord - Beaujon, France
| |
Collapse
|