1
|
Gu X, He X, Wang H, Li J, Chen R, Liu H. Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Imaging in Differentiation Between Recurrence and Pseudoprogression in High-Grade Glioma: A Meta-analysis. J Comput Assist Tomogr 2024; 48:303-310. [PMID: 37654056 DOI: 10.1097/rct.0000000000001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
INTRODUCTION In glioma patients that have undergone surgical tumor resection, the ability to reliably distinguish between pseudoprogression (PsP) and a recurrent tumor (RT) is of key clinical importance. Accordingly, this meta-analysis evaluated the utility of dynamic susceptibility contrast-enhanced perfusion-weighted imaging as a means of distinguishing between PsP and RT when analyzing patients with high-grade glioma. MATERIALS AND METHODS The PubMed, Web of Science, and Wanfang databases were searched for relevant studies. Pooled analyses of sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) values were conducted, after which the area under the curve (AUC) for summary receiver operating characteristic curves was computed. RESULTS This meta-analysis ultimately included 21 studies enrolling 879 patients with 888 lesions. Cerebral blood volume-associated diagnostic results were reported in 20 of the analyzed studies, and the respective pooled sensitivity, specificity, PLR, and NLR values were 86% (95% confidence interval [CI], 0.81-0.89), 83% (95% CI, 0.77-0.87), 4.94 (95% CI, 3.61-6.75), and 0.18 (95% CI, 0.13-0.23) for these 20 studies. The corresponding AUC value was 0.91 (95% CI, 0.88-0.93), and the publication bias risk was low ( P = 0.976). Cerebral blood flow-related diagnostic results were additionally reported in 6 of the analyzed studies, with respective pooled sensitivity, specificity, PLR, and NLR values of 85% (95% CI, 0.78-0.90), 85% (95% CI, 0.76-0.91), 5.54 (95% CI, 3.40-9.01), and 0.18 (95% CI, 0.12-0.26). The corresponding AUC value was 0.92 (95% CI, 0.89-0.94), and the publication bias risk was low ( P = 0.373). CONCLUSIONS The present meta-analysis results suggest that dynamic susceptibility contrast-enhanced perfusion-weighted imaging represents an effective diagnostic approach to distinguishing between PsP and RT in high-grade glioma patients.
Collapse
Affiliation(s)
| | - Xining He
- From the Departments of Neurosurgery
| | - Hualong Wang
- Radiology, Binzhou People's Hospital, Binzhou, China
| | | | | | | |
Collapse
|
2
|
Quan G, Wang T, Ren JL, Xue X, Wang W, Wu Y, Li X, Yuan T. Prognostic and predictive impact of abnormal signal volume evolution early after chemoradiotherapy in glioblastoma. J Neurooncol 2023; 162:385-396. [PMID: 36991305 DOI: 10.1007/s11060-023-04299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION This study was designed to explore the feasibility of semiautomatic measurement of abnormal signal volume (ASV) in glioblastoma (GBM) patients, and the predictive value of ASV evolution for the survival prognosis after chemoradiotherapy (CRT). METHODS This retrospective trial included 110 consecutive patients with GBM. MRI metrics, including the orthogonal diameter (OD) of the abnormal signal lesions, the pre-radiation enhancement volume (PRRCE), the volume change rate of enhancement (rCE), and fluid attenuated inversion recovery (rFLAIR) before and after CRT were analyzed. Semi-automatic measurements of ASV were done through the Slicer software. RESULTS In logistic regression analysis, age (HR = 2.185, p = 0.012), PRRCE (HR = 0.373, p < 0.001), post CE volume (HR = 4.261, p = 0.001), rCE1m (HR = 0.519, p = 0.046) were the significant independent predictors of short overall survival (OS) (< 15.43 months). The areas under the receiver operating characteristic curve (AUCs) for predicting short OS with rFLAIR3m and rCE1m were 0.646 and 0.771, respectively. The AUCs of Model 1 (clinical), Model 2 (clinical + conventional MRI), Model 3 (volume parameters), Model 4 (volume parameters + conventional MRI), and Model 5 (clinical + conventional MRI + volume parameters) for predicting short OS were 0.690, 0.723, 0.877, 0.879, 0.898, respectively. CONCLUSION Semi-automatic measurement of ASV in GBM patients is feasible. The early evolution of ASV after CRT was beneficial in improving the survival evaluation after CRT. The efficacy of rCE1m was better than that of rFLAIR3m in this evaluation.
Collapse
Affiliation(s)
- Guanmin Quan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tianda Wang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jia-Liang Ren
- GE Healthcare China, Beijing, People's Republic of China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yankai Wu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaotong Li
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tao Yuan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
3
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
4
|
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, Chmelík M, Clement P, Nechifor RE, Fodor LA, De Witt Hamer PC, Barkhof F, Pernet C, Lequin M, Deprez S, Jančálek R, Mutsaerts HJMM, Pizzini FB, Emblem KE, Keil VC. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA (NEW YORK, N.Y.) 2022; 35:163-186. [PMID: 34919195 PMCID: PMC8901489 DOI: 10.1007/s10334-021-00985-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.
Collapse
Affiliation(s)
- Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Louise Hogeboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Evita Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gwen Schroyen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jesper Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marek Chmelík
- Department of Technical Disciplines in Medicine, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Ruben E Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu-Andrei Fodor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Evidence Based Psychological Assessment and Interventions Doctoral School, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cyril Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Radim Jančálek
- St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Francesca B Pizzini
- Radiology, Deptartment of Diagnostic and Public Health, Verona University, Verona, Italy
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ge X, Wang M, Ma H, Zhu K, Wei X, Li M, Zhai X, Shen Y, Huang X, Hou M, Liu W, Wang M, Wang X. Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma. Magn Reson Imaging 2021; 86:20-27. [PMID: 34808303 DOI: 10.1016/j.mri.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND To investigate the performance of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling (pCASL) and diffusion-weighted imaging (DWI) in differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs) and to compare with the conventional MRI. METHODS Seventy-two patients with gliomas (including 27 LGGs and 45 HGGs) were studied using synthetic magnetic resonance imaging (sy-MRI), pCASL, and DWI with a 3.0 T MR scanner. T1 relaxometry (T1), T2 relaxometry (T2), as well as proton density (PD) from sy-MRI, cerebral blood flow (CBF) from pCASL, apparent diffusion coefficient (ADC) from DWI and enhancement quality (EQ), proportion enhancing (PE) from conventional contrast enhanced image based Visually-Accessible-Rembrandt-Images (VASARI) scoring system, were all analyzed by two radiologists. The Student's t-test, Mann-Whitney U test or Fisher's exact test was used to compare the parameters between LGGs and HGGs. The diagnostic performance of each parameter and their combination for glioma grading were analyzed. RESULTS Significant statistical differences in T1, PD, CBF, ADC, EQ and PE are observed between LGGs and HGGs (all P < 0.001). The ADC values have higher discrimination abilities compared with other univariable parameters, with the AUC of 0.905. AUC values for conventional contrast-enhanced method, EQ and PE from VASARI, and conventional contrast-free method, CBF + ADC, are 0.873 and 0.912 respectively. The combined T1, PD, CBF and ADC model had the best performance for differentiating LGGs and HGGs with AUC, sensitivity and specificity of 0.993, 95.5%, 100%, respectively. CONCLUSIONS Relaxometry parameters derived from synthetic MRI contributed to the discrimination of low-grade gliomas from high-grade gliomas. Proposed contrast-free approach combining T1, PD, CBF and ADC showed a strong discriminative power, and outperformed conventional approaches.
Collapse
Affiliation(s)
- Xin Ge
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Minglei Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Ma
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kai Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | | | - Min Li
- GE Healthcare, MR Enhancement Application, Beijing, China
| | - Xuefeng Zhai
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ying Shen
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Xueying Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Mingli Hou
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenxiao Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Minxing Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaodong Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
6
|
Takano M, Kinoshita Y, Sugiyama K, Kolakshyapati M, Takayasu T, Yonezawa U, Taguchi A, Akiyama Y, Amatya VJ, Takeshima Y, Kurisu K, Yamasaki F. Detecting non-germinomatous germ cell tumor component by arterial spin labeling perfusion-weighted MR imaging in central nervous system germ cell tumor. Eur J Radiol 2021; 136:109523. [PMID: 33460957 DOI: 10.1016/j.ejrad.2021.109523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Differentiating between germinoma and non-germinomatous germ cell tumor (NGGCT) is important because sensitivity to chemotherapy and/or radiotherapy is quite different between these two subgroups. In this study, we evaluated whether the arterial spin labeling (ASL) based perfusion-weighted imaging (PWI) could provide additional information for the differential diagnosis between germinoma and NGGCT. METHOD Between 2011 and 2018, 20 patients with central nervous system (CNS) germ cell tumor (GCT) who underwent preoperative MR imaging including ASL-PWI were enrolled in this study. Relative tumor blood flow (rTBF) was evaluated on ASL-PWI by manually placing regions of interest at gadolinium enhanced part of the tumors and normal subcortical white matter. Presence of intratumoral T1 hyperintense foci and apparent diffusion coefficient (ADC) were also evaluated. The final diagnosis was made by the combination of tumor markers and the histological diagnosis. RESULTS Among 20 patients of CNS-GCT, 11 were diagnosed as germinoma and 9 were diagnosed as NGGCT. In the germinoma subgroup, the rTBF ranged from 0.90 to 1.71 (mean 1.21, median 1.09), while it ranged from 1.14 to 5.75 (mean 3.91, median 3.31) in NGGCT subgroup. The receiver operating characteristic (ROC) curve showed that calculating rTBF is useful for differentiating between germinoma and NGGCT (area under the curve (AUC) 0.929, P = 0.0012) compared to intratumoral T1 hyperintense foci (AUC 0.788, P = 0.0304) and ADC (AUC 0.919, P = 0.0016). CONCLUSIONS High rTBF obtained by ASL-PWI implied the presence of NGGCT component. This information might help in deciding the chemotherapy/radiotherapy intensity.
Collapse
Affiliation(s)
- Motoki Takano
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasuyuki Kinoshita
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology & Neuro-oncology Program, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Manish Kolakshyapati
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Neurosurgery, B & B Hospital, Gwarko, Lalitpur, Nepal
| | - Takeshi Takayasu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuji Akiyama
- Department of Clinical Radiology, Hiroshima University, Hiroshima 734-8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kaoru Kurisu
- Director, Chugoku Rosai Hospital, 1-5-1 Hirotagaya, Kure, Hiroshima 737-0193, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
7
|
Xi YB, Kang XW, Wang N, Liu TT, Zhu YQ, Cheng G, Wang K, Li C, Guo F, Yin H. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastasis using arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging. Eur J Radiol 2019; 112:59-64. [DOI: 10.1016/j.ejrad.2019.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/02/2018] [Accepted: 01/07/2019] [Indexed: 01/22/2023]
|
8
|
Emerging Functional Imaging Biomarkers of Tumour Responses to Radiotherapy. Cancers (Basel) 2019; 11:cancers11020131. [PMID: 30678055 PMCID: PMC6407112 DOI: 10.3390/cancers11020131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour responses to radiotherapy are currently primarily assessed by changes in size. Imaging permits non-invasive, whole-body assessment of tumour burden and guides treatment options for most tumours. However, in most tumours, changes in size are slow to manifest and can sometimes be difficult to interpret or misleading, potentially leading to prolonged durations of ineffective treatment and delays in changing therapy. Functional imaging techniques that monitor biological processes have the potential to detect tumour responses to treatment earlier and refine treatment options based on tumour biology rather than solely on size and staging. By considering the biological effects of radiotherapy, this review focusses on emerging functional imaging techniques with the potential to augment morphological imaging and serve as biomarkers of early response to radiotherapy.
Collapse
|
9
|
|
10
|
Kim JH, Choi DS, Park SE, Choi HC, Koh EH, Kim SH. Preoperative localization of the sensorimotor cortex and measurement of tumor perfusion in a single acquisition using ASL technique. J Clin Neurosci 2018; 59:367-371. [PMID: 30391311 DOI: 10.1016/j.jocn.2018.10.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/01/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022]
Abstract
Resting state fMRI (rs-fMRI) using arterial spin labelling (ASL) technique was performed for the preoperative localization of the sensorimotor cortex in a patient with lymphoma and the results were compared to those of task-based (tb) and rs-fMRI studies using blood oxygenation level-dependent (BOLD) sequence. Rs-fMRI using ASL showed similar results in the regions of the sensorimotor network to those of tb- and rs-fMRI fMRI using BOLD. ASL technique has a potential in clinical practice because all of brain perfusion imaging, cerebral blood flow measurement, and rs-fMRI study can be performed at a single acquisition.
Collapse
Affiliation(s)
- Ju Ho Kim
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Seob Choi
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea; Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.
| | - Sung Eun Park
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ho Cheol Choi
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Eun Ha Koh
- Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Seong Hu Kim
- Department of Radiology, Masan University, Changwon, Republic of Korea
| |
Collapse
|
11
|
Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metab 2018; 38:603-626. [PMID: 29168667 PMCID: PMC5888859 DOI: 10.1177/0271678x17743240] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arterial spin labeling (ASL) is an MRI technique that was first proposed a quarter of a century ago. It offers the prospect of non-invasive quantitative measurement of cerebral perfusion, making it potentially very useful for research and clinical studies, particularly where multiple longitudinal measurements are required. However, it has suffered from a number of challenges, including a relatively low signal-to-noise ratio, and a confusing number of sequence variants, thus hindering its clinical uptake. Recently, however, there has been a consensus adoption of an accepted acquisition and analysis framework for ASL, and thus a better penetration onto clinical MRI scanners. Here, we review the basic concepts in ASL and describe the current state-of-the-art acquisition and analysis approaches, and the versatility of the method to perform both quantitative cerebral perfusion measurement, along with quantitative cerebral angiographic measurement.
Collapse
Affiliation(s)
- Peter Jezzard
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Thomas W Okell
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Iv M, Yoon BC, Heit JJ, Fischbein N, Wintermark M. Current Clinical State of Advanced Magnetic Resonance Imaging for Brain Tumor Diagnosis and Follow Up. Semin Roentgenol 2018; 53:45-61. [DOI: 10.1053/j.ro.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 2017; 60:169-177. [PMID: 29218370 DOI: 10.1007/s00234-017-1955-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study is to differentiate recurrent/residual gliomas from postradiation changes using arterial spin labeling (ASL) perfusion and diffusion tensor imaging (DTI)-derived metrics. METHODS Prospective study was conducted upon 42 patients with high-grade gliomas after radiotherapy only or prior to other therapies that underwent routine MR imaging, ASL, and DTI. The tumor blood flow (TBF), fractional anisotropy (FA), and mean diffusivity (MD) of the enhanced lesion and related edema were calculated. The lesion was categorized as recurrence/residual or postradiation changes. RESULTS There was significant differences between residual/recurrent gliomas and postradiation changes of TBF (P = 0.001), FA (P = 0.001 and 0.04), and MD (P = 0.001) of enhanced lesion and related edema respectively. The area under the curve (AUC) of TBF of enhanced lesion and related edema used to differentiate residual/recurrent gliomas from postradiation changes were 0.95 and 0.93 and of MD were 0.95 and 0.81 and of FA were 0.81 and 0.695, respectively. Combined ASL and DTI metrics of the enhanced lesion revealed AUC of 0.98, accuracy of 95%, sensitivity of 93.8%, specificity of 95.8%, positive predictive value (PPV) of 93.8%, and negative predictive value (NPV) of 95.8%. Combined metrics of ASL and DTI of related edema revealed AUC of 0.97, accuracy of 92.5%, sensitivity of 93.8%, specificity of 91.7%, PPV of 88.2%, and NPV of 95.7. CONCLUSION Combined ASL and DTI metrics of enhanced lesion and related edema are valuable noninvasive tools in differentiating residual/recurrent gliomas from postradiation changes.
Collapse
Affiliation(s)
| | - Lamiaa El-Serougy
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, 13551, Egypt
| | | | - Gada Gaballa
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, 13551, Egypt
| | - Mona Talaat
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, 13551, Egypt
| |
Collapse
|