1
|
Dauleac C, Jacquesson T, Frindel C, André-Obadia N, Ducray F, Mertens P, Cotton F. Value of Spinal Cord Diffusion Imaging and Tractography in Providing Predictive Factors for Tumor Resection in Patients with Intramedullary Tumors: A Pilot Study. Cancers (Basel) 2024; 16:2834. [PMID: 39199605 PMCID: PMC11352615 DOI: 10.3390/cancers16162834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
This pilot study aimed to investigate the interest of high angular resolution diffusion imaging (HARDI) and tractography of the spinal cord (SC) in the management of patients with intramedullary tumors by providing predictive elements for tumor resection. Eight patients were included in a prospective study. HARDI images of the SC were acquired using a 3T MRI scanner with a reduced field of view. Opposed phase-encoding directions allowed distortion corrections. SC fiber tracking was performed using a deterministic approach, with extraction of tensor metrics. Then, regions of interest were drawn to track the spinal pathways of interest. HARDI and tractography added value by providing characteristics about the microstructural organization of the spinal white fibers. In patients with SC tumors, tensor metrics demonstrated significant changes in microstructural architecture, axonal density, and myelinated fibers (all, p < 0.0001) of the spinal white matter. Tractography aided in the differentiation of tumor histological types (SC-invaded vs. pushed back by the tumor), and differentiation of the spinal tracts enabled the determination of precise anatomical relationships between the tumor and the SC, defining the tumor resectability. This study underlines the value of using HARDI and tractography in patients with intramedullary tumors, to show alterations in SC microarchitecture and to differentiate spinal tracts to establish predictive factors for tumor resectability.
Collapse
Affiliation(s)
- Corentin Dauleac
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurochirurgie de la Moelle Spinale et des Nerfs Périphériques, 69002 Lyon, France;
- Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon I, 69100 Villeurbanne, France; (T.J.); (F.D.); (F.C.)
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1296, INSA Lyon, 69100 Villeurbanne, France;
| | - Timothée Jacquesson
- Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon I, 69100 Villeurbanne, France; (T.J.); (F.D.); (F.C.)
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1296, INSA Lyon, 69100 Villeurbanne, France;
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurochirurgie Crânienne, 69002 Lyon, France
| | - Carole Frindel
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1296, INSA Lyon, 69100 Villeurbanne, France;
| | - Nathalie André-Obadia
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurologie Fonctionnelle et Electrophysiologie, 69002 Lyon, France;
| | - François Ducray
- Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon I, 69100 Villeurbanne, France; (T.J.); (F.D.); (F.C.)
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neuro-Oncologie, 69002 Lyon, France
| | - Patrick Mertens
- Hospices Civils de Lyon, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Service de Neurochirurgie de la Moelle Spinale et des Nerfs Périphériques, 69002 Lyon, France;
- Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon I, 69100 Villeurbanne, France; (T.J.); (F.D.); (F.C.)
| | - François Cotton
- Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon I, 69100 Villeurbanne, France; (T.J.); (F.D.); (F.C.)
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1296, INSA Lyon, 69100 Villeurbanne, France;
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Radiologie, 69002 Lyon, France
| |
Collapse
|
2
|
de Paiva JLR, Sabino JV, Pereira FV, Okuda PA, Villarinho LDL, Queiroz LDS, França MC, Reis F. The Role of MRI in the Diagnosis of Spinal Cord Tumors. Semin Ultrasound CT MR 2023; 44:436-451. [PMID: 37555685 DOI: 10.1053/j.sult.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Spinal cord tumors are uncommon, and its multiple representatives not always have pathognomonic characteristics, which poses a challenge for both patients and caring physicians. The radiologist performs an important role in recognizing these tumors, as well as in differentiating between neoplastic and non-neoplastic processes, supporting clinical and surgical decision-making in patients with spinal cord injury. Magnetic Resonance Imaging (MRI) assessment, paired with a deep understanding of the various patterns of cord involvement allied to detailed clinical data can provide a diagnosis or significantly limit the differential diagnosis in most cases. In this article, we aim to review the most common and noteworthy intramedullary and extramedullary spinal tumors, as well as some other tumoral mimics, with an emphasis on their MRI morphologic characteristics.
Collapse
Affiliation(s)
- Jean L R de Paiva
- Department of Anesthesiology, Oncology and Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - João V Sabino
- Department of Anesthesiology, Oncology and Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda V Pereira
- Department of Anesthesiology, Oncology and Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo A Okuda
- Department of Anesthesiology, Oncology and Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Marcondes C França
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiano Reis
- Department of Anesthesiology, Oncology and Radiology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
3
|
Yildiz S, Schecht M, Aggarwal A, Nael K, Doshi A, Pawha PS. Diffusion Weighted Imaging in Spine Tumors. Neuroimaging Clin N Am 2023; 33:459-475. [PMID: 37356862 DOI: 10.1016/j.nic.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Diffusion weighted imaging (DWI) has developed into a powerful tool for the evaluation of spine tumors, particularly for the assessment of vertebral marrow lesions and intramedullary tumors. Advances in magnetic resonance techniques have improved the quality of spine DWI and diffusion tensor imaging (DTI) in recent years, with increased reproducibility and utilization. DTI, with quantitative parameters such as fractional anisotropy and qualitative visual assessment of nerve fiber tracts, can play a valuable role in the evaluation and surgical planning of spinal cord tumors. These widely available techniques can be used to enhance the diagnostic evaluation of spinal tumors.
Collapse
Affiliation(s)
- Sema Yildiz
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA.
| | - Michael Schecht
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| | - Amit Aggarwal
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| | - Kambiz Nael
- Division of Neuroradiology, Department of Radiology, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Amish Doshi
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| | - Puneet S Pawha
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| |
Collapse
|
4
|
Dauleac C, Frindel C, Pélissou-Guyotat I, Nicolas C, Yeh FC, Fernandez-Miranda J, Cotton F, Jacquesson T. Full cervical cord tractography: A new method for clinical use. Front Neuroanat 2022; 16:993464. [PMID: 36237419 PMCID: PMC9550930 DOI: 10.3389/fnana.2022.993464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Despite recent improvements in diffusion-weighted imaging, spinal cord tractography is not used in routine clinical practice because of difficulties in reconstructing tractograms, with a pertinent tri-dimensional-rendering, in a long post-processing time. We propose a new full tractography approach to the cervical spinal cord without extensive manual filtering or multiple regions of interest seeding that could help neurosurgeons manage various spinal cord disorders. Four healthy volunteers and two patients with either cervical intramedullary tumors or spinal cord injuries were included. Diffusion-weighted images of the cervical spinal cord were acquired using a Philips 3 Tesla machine, 32 diffusion directions, 1,000 s/mm2b-value, 2 × 2 × 2 mm voxel size, reduced field-of-view (ZOOM), with two opposing phase-encoding directions. Distortion corrections were then achieved using the FSL software package, and tracking of the full cervical spinal cord was performed using the DSI Studio software (quantitative anisotropy-based deterministic algorithm). A unique region of avoidance was used to exclude everything that is not of the nervous system. Fiber tracking parameters used adaptative fractional anisotropy from 0.015 to 0.045, fiber length from 10 to 1,000 mm, and angular threshold of 90°. In all participants, a full cervical cord tractography was performed from the medulla to the C7 spine level. On a ventral view, the junction between the medulla and spinal cord was identified with its pyramidal bulging, and by an invagination corresponding to the median ventral sulcus. On a dorsal view, the fourth ventricle—superior, middle, and inferior cerebellar peduncles—was seen, as well as its floor and the obex; and gracile and cuneate tracts were recognized on each side of the dorsal median sulcus. In the case of the intramedullary tumor or spinal cord injury, the spinal tracts were seen to be displaced, and this helped to adjust the neurosurgical strategy. This new full tractography approach simplifies the tractography pipeline and provides a reliable 3D-rendering of the spinal cord that could help to adjust the neurosurgical strategy.
Collapse
Affiliation(s)
- Corentin Dauleac
- Service de Neurochirurgie, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
- *Correspondence: Corentin Dauleac
| | - Carole Frindel
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
| | - Isabelle Pélissou-Guyotat
- Service de Neurochirurgie, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Célia Nicolas
- Hospices Civils de Lyon, Centre Hospitalier de Lyon Sud, Service de Radiologie, Lyon, France
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Juan Fernandez-Miranda
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - François Cotton
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier de Lyon Sud, Service de Radiologie, Lyon, France
| | - Timothée Jacquesson
- Service de Neurochirurgie, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Laboratoire CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Villeurbanne, France
- Université de Lyon I, Lyon, France
| |
Collapse
|
5
|
Diffusion tensor imaging in unclear intramedullary tumor-suspected lesions allows separating tumors from inflammation. Spinal Cord 2021; 60:655-663. [PMID: 34966172 PMCID: PMC9287173 DOI: 10.1038/s41393-021-00741-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
DESIGN Prospective diagnostic study. OBJECTIVES Primary imaging-based diagnosis of spinal cord tumor-suspected lesions is often challenging. The identification of the definite entity is crucial for dedicated treatment and therefore reduction of morbidity. The aim of this trial was to investigate specific quantitative signal patterns to differentiate unclear intramedullary tumor-suspected lesions based on diffusion tensor imaging (DTI). SETTING Medical Center - University of Freiburg, Germany. METHODS Forty patients with an unclear tumor-suspected lesion of the spinal cord prospectively underwent DTI. Primary diagnosis was determined by histological or clinical work-up or remained indeterminate with follow-up. DTI metrics (FA/ADC) were evaluated at the central lesion area, lesion margin, edema, and normal spinal cord and compared between different diagnostic groups (ependymomas, other spinal cord tumors, inflammations). RESULTS Mean DTI metrics for all spinal cord tumors (n = 18) showed significantly reduced FA and increased ADC values compared to inflammatory lesions (n = 8) at the lesion margin (p < 0.001, p = 0.001) and reduced FA at the central lesion area (p < 0.001). There were no significant differences comparing the neoplastic subgroups of ependymomas (n = 10) and other spinal cord tumors (n = 8), but remaining differences for both compared to the inflammation subgroup. We found significant higher ADC (p = 0.040) and a trend to decreased FA (p = 0.081) for ependymomas compared to inflammations at the edema. CONCLUSION Even if distinct differentiation of ependymomas from other spinal cord neoplasms was not possible based on quantitative DTI metrics, FA and ADC were feasible to separate inflammatory lesions. This may avoid unnecessary surgery in patients with unclear intramedullary tumor-suspected lesions.
Collapse
|
6
|
Massaad E, Ha Y, Shankar GM, Shin JH. Clinical Prediction Modeling in Intramedullary Spinal Tumor Surgery. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:333-339. [PMID: 34862557 DOI: 10.1007/978-3-030-85292-4_37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Artificial intelligence is poised to influence various aspects of patient care, and neurosurgery is one of the most uprising fields where machine learning is being applied to provide surgeons with greater insight about the pathophysiology and prognosis of neurological conditions. This chapter provides a guide for clinicians on relevant aspects of machine learning and reviews selected application of these methods in intramedullary spinal cord tumors. The potential areas of application of machine learning extend far beyond the analyses of clinical data to include several areas of artificial intelligence, such as genomics and computer vision. Integration of various sources of data and application of advanced analytical approaches could improve risk assessment for intramedullary tumors.
Collapse
Affiliation(s)
- Elie Massaad
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
8
|
McLachlin S, Leung J, Sivan V, Quirion PO, Wilkie P, Cohen-Adad J, Whyne CM, Hardisty MR. Spatial correspondence of spinal cord white matter tracts using diffusion tensor imaging, fibre tractography, and atlas-based segmentation. Neuroradiology 2021; 63:373-380. [PMID: 33447915 DOI: 10.1007/s00234-021-02635-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Neuroimaging provides great utility in complex spinal surgeries, particularly when anatomical geometry is distorted by pathology (tumour, degeneration, etc.). Spinal cord MRI diffusion tractography can be used to generate streamlines; however, it is unclear how well they correspond with white matter tract locations along the cord microstructure. The goal of this work was to evaluate the spatial correspondence of DTI tractography with anatomical MRI in healthy anatomy (where anatomical locations can be well defined in T1-weighted images). METHODS Ten healthy volunteers were scanned on a 3T system. T1-weighted (1 × 1 × 1 mm) and diffusion-weighted images (EPI readout, 2 × 2 × 2 mm, 30 gradient directions) were acquired and subsequently registered (Spinal Cord Toolbox (SCT)). Atlas-based (SCT) anatomic label maps of the left and right lateral corticospinal tracts were identified for each vertebral region (C2-C6) from T1 images. Tractography streamlines were generated with a customized approach, enabling seeding of specific spinal tract regions corresponding to individual vertebral levels. Spatial correspondence of generated fibre streamlines with anatomic tract segmentations was compared in unseeded regions of interest (ROIs). RESULTS Spatial correspondence of the lateral corticospinal tract streamlines was good over a single vertebral ROI (Dice's similarity coefficient (DSC) = 0.75 ± 0.08, Hausdorff distance = 1.08 ± 0.17 mm). Over larger ROI, fair agreement between tractography and anatomical labels was achieved (two levels: DSC = 0.67 ± 0.13, three levels: DSC = 0.52 ± 0.19). CONCLUSION DTI tractography produced good spatial correspondence with anatomic white matter tracts, superior to the agreement between multiple manual tract segmentations (DSC ~ 0.5). This supports further development of spinal cord tractography for computer-assisted neurosurgery.
Collapse
Affiliation(s)
- Stewart McLachlin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, E7 3424, Waterloo, Ontario, N2L 3G1, Canada
| | - Jason Leung
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada
| | - Vignesh Sivan
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada
| | - Pierre-Olivier Quirion
- Department of Electrical Engineering, Polytechnique Montreal, Ecole Polytechnique, Pavillon Lassonde, 2700 Ch de la Tour, L-5610, Montréal, Quebec, H3T 1N8, Canada
| | - Phoenix Wilkie
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada
| | - Julien Cohen-Adad
- Department of Electrical Engineering, Polytechnique Montreal, Ecole Polytechnique, Pavillon Lassonde, 2700 Ch de la Tour, L-5610, Montréal, Quebec, H3T 1N8, Canada
| | - Cari Marisa Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada
- Department of Surgery, University of Toronto, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada
| | - Michael Raymond Hardisty
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada.
- Department of Surgery, University of Toronto, 2075 Bayview Ave, S621, Toronto, Ontario, M4N 3M5, Canada.
| |
Collapse
|
9
|
Kandemirli SG, Reddy A, Hitchon P, Saini J, Bathla G. Intramedullary tumours and tumour mimics. Clin Radiol 2020; 75:876.e17-876.e32. [PMID: 32591229 DOI: 10.1016/j.crad.2020.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/07/2020] [Indexed: 01/12/2023]
Abstract
Spinal cord lesions are traditionally classified as either extradural or intradural extramedullary or of intramedullary origin. Intramedullary spinal cord tumours are histopathologically similar to cranial tumours with a diverse range of pathologies. Astrocytomas and ependymomas account for approximately 80% of all intramedullary tumours, with other primary and secondary lesions accounting for the remaining 20%. Magnetic resonance imaging is the preferred imaging modality for diagnosing and characterising spinal cord lesions; however, accurate characterisation of tumour histology can be challenging, and is further confounded by intramedullary non-neoplastic lesions, such as demyelinating vascular, inflammatory, infectious, or traumatic lesions. This review illustrates the spectrum of intramedullary tumours and tumour mimics with emphasis on the imaging findings.
Collapse
Affiliation(s)
- S G Kandemirli
- University of Iowa Hospital and Clinics, Department of Radiology, Iowa city, IOWA, USA.
| | - A Reddy
- University of Iowa Hospital and Clinics, Department of Radiology, Iowa city, IOWA, USA
| | - P Hitchon
- University of Iowa Hospital and Clinics, Department of Neurosurgery, Iowa city, IOWA, USA
| | - J Saini
- Neuroimaging and Interventional Radiology, National Institute for Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - G Bathla
- University of Iowa Hospital and Clinics, Department of Radiology, Iowa city, IOWA, USA
| |
Collapse
|
10
|
Magnetic-Resonance Diffusion-Tensor Tractography in the Diagnosis of Tumefactive Spinal-Cord Lesions in Neuromyelitis Optica. Diagnostics (Basel) 2020; 10:diagnostics10060401. [PMID: 32545605 PMCID: PMC7344653 DOI: 10.3390/diagnostics10060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetic-resonance (MR) imaging is the modality of choice for the evaluation of spinal-cord lesions. However, challenges persist in discriminating demyelinating processes from neoplastic lesions using conventional MR sequences. Consequently, an invasive spinal-cord biopsy is likely for most patients. MR diffusion-tensor imaging is an emerging noninvasive and powerful method for characterizing changes in tissue microstructure associated with spinal disorders. We currently present the case of a middle-aged woman suffering from neuromyelitis optica, and highlight that MR diffusion-tensor tractography can be helpful in the identification of tumefactive spinal-cord lesions.
Collapse
|
11
|
Shih RY, Koeller KK. Intramedullary Masses of the Spinal Cord: Radiologic-Pathologic Correlation. Radiographics 2020; 40:1125-1145. [PMID: 32530746 DOI: 10.1148/rg.2020190196] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal cord tumors are a challenge for patients and neurosurgeons because of the high risk of neurologic deficits from the disease process and surgical interventions. Spinal cord tumors are uncommon, and approximately 2%-3% of primary intra-axial tumors of the central nervous system occur in the spinal cord. Primary intra-axial tumors are usually derived from neuroepithelial tissue, especially glial cells. This often leads to a classic intramedullary mass differential diagnosis of ependymoma or astrocytoma, which together constitute up to 70% of spinal cord tumors. For example, ependymomas occur predominantly in adults, and astrocytomas (specifically pilocytic astrocytomas) occur predominantly in children. While that is an excellent starting point, in order to refine the differential diagnosis, the authors review the radiologic-pathologic features of specific neoplastic categories and entities recognized by the World Health Organization (WHO) in the 2016 WHO Classification of Tumours of the Central Nervous System and a few additional congenital-developmental entities. Radiologists can add value by providing a reasonable preoperative differential diagnosis for the patient and neurosurgeon, in many cases by favoring the most common conditions, and in other cases by identifying radiologic features that may point toward a less common entity. Some of the less common entities include intramedullary myxopapillary ependymoma, spinal subependymoma, and spinal hemangioblastoma. Whenever possible, the characteristic imaging features and locations of these tumors are explained or traced back to the underlying cell of origin and findings seen at histopathologic examination.See discussion on this article by Buch.
Collapse
Affiliation(s)
- Robert Y Shih
- From the Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814 (R.Y.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (K.K.K.)
| | - Kelly K Koeller
- From the Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814 (R.Y.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (K.K.K.)
| |
Collapse
|
12
|
Turna O, Turna IF. Quantitative assessment of cervical spinal cord by diffusion tensor tractography in 3.0 T. Radiol Med 2020; 126:83-88. [PMID: 32424658 DOI: 10.1007/s11547-020-01224-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We aimed to evaluate the mean values of diffusion tensor tracking (DTT) of cervical spinal cord in normal subjects by using multi-shot EPI (MS-EPI) sequence in 3.0 Tesla (3.0T) magnetic resonance imaging (MRI). METHODS This retrospective study included 96 healthy subjects. DTI with b-values: 0 and 1000 s/mm2 was performed. Cervical spinal cords were quantitatively evaluated with drawing round or plane region of interest on sagittal images. For all subjects, the number of tracts, mean fractional anisotropy (FA), mean diffusivity (MD), mean axial diffusivity (AD) and mean radial diffusivity (RD) (× 10-3 mm2/s) were measured. RESULTS The number of tracts obtained from round method was significantly higher than the ones from plane method. In round group, there was a moderate positive correlation between age and mean FA values (r = 0.51, P = 0.003), a weak negative correlation between age and MD values (r = - 0.497, P = 0.004) and between age and mean AD values (r = - 0.443, P = 0.011), a moderate negative correlation between age and mean RD values (r = - 0.542, P = 0.001). In plane group, there was a weak positive correlation between age and mean FA values (r = 0.403, P = 0.022) and a weak negative correlation between age and mean RD values (r = - 0.402, P = 0.022). CONCLUSION Our results might be helpful for emphasizing the reference values and also for evaluating and comparing the pathologic spinal cords affected by degeneration, trauma or tumors.
Collapse
Affiliation(s)
- Onder Turna
- Department of Radiology, Istanbul Mehmet Akif Ersoy Cardiovascular and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey.
| | - Isil Fazilet Turna
- Department of Physical Medicine and Rehabilitation, Acıbadem Mehmet Ali Aydınlar University Atakent Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Dauleac C, Frindel C, Mertens P, Jacquesson T, Cotton F. Overcoming challenges of the human spinal cord tractography for routine clinical use: a review. Neuroradiology 2020; 62:1079-1094. [DOI: 10.1007/s00234-020-02442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
|
14
|
Noguerol TM, Barousse R, Amrhein TJ, Royuela-del-Val J, Montesinos P, Luna A. Optimizing Diffusion-Tensor Imaging Acquisition for Spinal Cord Assessment: Physical Basis and Technical Adjustments. Radiographics 2020; 40:403-427. [DOI: 10.1148/rg.2020190058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Teodoro Martín Noguerol
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Rafael Barousse
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Timothy J. Amrhein
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Javier Royuela-del-Val
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Paula Montesinos
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Antonio Luna
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| |
Collapse
|
15
|
Surgical management of spinal intramedullary tumors: Ten-year experience in a single institution. J Clin Neurosci 2020; 73:201-208. [PMID: 31932186 DOI: 10.1016/j.jocn.2019.12.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
Despite their rare occurrence, intramedullary spinal cord tumors can cause considerable morbidity and mortality without treatment. Timing of surgery, extent of resection and selection of favorable treatment option are important considerations for a good surgical outcome. In this clinical study, we report our patient series and convey our treatment strategy. We retrospectively reviewed 91 patients with primary intramedullary spinal cord tumors who underwent microsurgical resection at our institution between 2008 and 2018. Data were collected consisting of age, sex, location and histology of tumor, extent of resection, presenting symptoms and neurological outcomes. Modified McCormick Scale was used to assess neurological status of patients. 47 female and 44 male patients were followed-up for a mean period of 35.7 months. The most frequent pathological diagnosis was ependymoma in 56 patients, followed by astrocytoma in 21 and hemangioblastoma in 5 patients. The rest of the tumors consisted of 3 cavernomas, 3 mature cystic teratomas, 2 PNET, one epidermoid tumor. Gross total resection was achieved in 67 patients, while subtotal resection and biopsy was performed in 15 and 9 respectively. The most commonly involved localization was cervical (n = 39), followed by thoracic region (n = 24). Despite immediate postoperative worsening of neurological status, a great number of patients improved at the last follow-up. Gross total resection remains the primary goal of treatment while adjuvant radiation and/or chemotherapy may be alternative options for high grade tumors. Preoperative neurological status was the most important and the strongest predictor of functional outcome.
Collapse
|
16
|
Shim E, Lee E, Lee JW, Kang Y, Ahn JM, Kang HS. Feasibility of postoperative 3-tesla diffusion tensor imaging in cervical spondylotic myelopathy: A comparison of single-shot EPI and multi-shot EPI. Eur J Radiol 2020; 122:108751. [DOI: 10.1016/j.ejrad.2019.108751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
17
|
Byvaltsev VA, Stepanov IA, Kichigin AI. THE ROLE OF DIFFUSION-WEIGHTED MRI OF PATIENTS WITH SPINE METASTASES. COLUNA/COLUMNA 2019. [DOI: 10.1590/s1808-185120191804225382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: The role of diffusion-weighted MRI in differential diagnostics and predicting the survival of patients with spine metastases was studied. Methods: The study included data from MRI and morphological studies of 23 patients with spine metastases. Results: The values obtained for the apparent diffusion coefficient (ADC) of tumors were compared with their histological type, cell density and Ki-67 proliferation index. The effect of ADC values on overall patient survival was also assessed. A reliable inverse correlation was established between ADC values and Ki-67 proliferation index for various types of spine metastases (r=-0.753, p=0.017). The dependence of ADC values and overall survival of patients with metastases in the spine is shown. Conclusion: The technique of diffusion-weighted MRI can be used as part of a comprehensive assessment in the preoperative planning of surgical treatment, and as a prognostic factor of overall survival for this group of patients. Level of Evidence II. Prognostic retrospective study,
Collapse
Affiliation(s)
- Vadim Anatol'evich Byvaltsev
- Irkutsk State Medical University, Russia; Railway Clinical Hospital, Russia; Irkutsk Scientific Center of Surgery and Traumatology, Russia; Irkutsk State Medical Academy of Continuing Education, Russia
| | | | | |
Collapse
|
18
|
Role of Diffusion Tensor Imaging Parameters in the Characterization and Differentiation of Infiltrating and Non-Infiltrating Spinal Cord Tumors : Preliminary Study. Clin Neuroradiol 2019; 30:739-747. [PMID: 31754759 PMCID: PMC7728647 DOI: 10.1007/s00062-019-00851-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023]
Abstract
Background and Purpose Recent attempts to utilize diffusion tensor imaging (DTI) to identify the extent of microinfiltration of a tumor in the brain have been successful. It was therefore speculated that this technique could also be useful in the spinal cord. The aim of this study was to differentiate between infiltrating and noninfiltrating intramedullary spinal tumors using DTI-derived metrics. Material and Methods The study group consisted of 6 patients with infiltrating and 12 with noninfiltrating spinal cord tumors. Conventional magnetic resonance imaging (MRI) with gadolinium administration was performed followed by DTI. Fractional anisotropy (FA), diffusivity (TRACE) and apparent diffusion coefficient (ADC) were measured in the enhancing tumor mass, peritumoral margins, peritumoral edema and normal appearing spinal cord. The results were compared using non-parametric Mann–Whitney U test with statistical significance p < 0.05. Results In peritumoral margins the FA values were significantly higher in the noninfiltrating compared to the infiltrating tumors (p < 0.007), whereas TRACE values were significantly lower (p < 0.017). The results were similar in peritumoral edema. The FA values in the tumor mass showed no significant differences between the two groups while TRACE showed a statistically significant difference (p < 0.003). There was no statistical difference in any parameters in normal appearing spinal cord. Conclusion Quantitative analysis of DTI parameters of spinal cord tissue surroundings spinal masses can be useful for differentiation between infiltrating and non-infiltrating intramedullary spinal tumors.
Collapse
|
19
|
Suero Molina E, Stummer W. Where and When to Cut? Fluorescein Guidance for Brain Stem and Spinal Cord Tumor Surgery-Technical Note. Oper Neurosurg (Hagerstown) 2019; 15:325-331. [PMID: 29301040 PMCID: PMC6093771 DOI: 10.1093/ons/opx269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/16/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Spinal cord and brain stem lesions require a judicious approach with an optimized trajectory due to a clustering of functions on their surfaces. Intraoperative mapping helps locate function. To confidently locate such lesions, neuronavigation alone lacks the desired accuracy and is of limited use in the spinal cord. OBJECTIVE To evaluate the clinical value of fluoresceins for initial delineation of such critically located lesions. METHODS We evaluated fluorescein guidance in the surgical resection of lesions with blood-brain barrier disruption demonstrating contrast enhancement in magnet resonance imaging in the spinal cord and in the brain stem in 3 different patients. Two patients harbored a diffuse cervical and thoracic spinal cord lesion, respectively. Another patient suffered metastatic lesions in the brain stem and at the floor of the fourth ventricle. Low-dose fluorescein (4 mg/kg body weight) was applied after anesthesia induction and visualized using the Zeiss Pentero 900 Yellow560 filter (Carl Zeiss, Oberkochen, Germany). RESULTS Fluorescein was helpful for locating lesions and for defining the best possible trajectory. During resection, however, we found unspecific propagation of fluorescein within the brain stem up to 6 mm within 3 h after application. As these lesions were otherwise distinguishable from surrounding tissue, monitoring resection was not an issue. CONCLUSION Fluorescein guidance is a feasible tool for defining surgical entry zones when aiming for surgical removal of spinal cord and brain stem lesions. Unselective fluorescein extravasation cautions against using such methodology for monitoring completeness of resection. Providing the right timing, a window of pseudoselectivity could increase fluoresceins’ clinical value in these cases.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
20
|
Atik AF, Calabrese E, Gramer R, Adil SM, Rahimpour S, Pagadala P, Johnson GA, Lad SP. Structural mapping with fiber tractography of the human cuneate fasciculus at microscopic resolution in cervical region. Neuroimage 2019; 196:200-206. [PMID: 30981859 DOI: 10.1016/j.neuroimage.2019.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022] Open
Abstract
Human spinal white matter tract anatomy has been mapped using post mortem histological information with the help of molecular tracing studies in animal models. This study used 7 Tesla diffusion MR tractography on a human cadaver that was harvested 24 hours post mortem to evaluate cuneate fasciculus anatomy in cervical spinal cord. Based on this method, for the first time much more nuanced tractographic anatomy was used to investigate possible new routes for cuneate fasciculus in the posterior and lateral funiculus. Additionally, current molecular tracing studies were reviewed, and confirmatory data was presented along with our radiological results. Both studies confirm that upon entry to the spinal cord, upper cervical level tracts (C1-2-3) travel inside lateral funiculus and lower level tracts travel medially inside the posterior funiculus after entry at posterolateral sulcus which is different than traditional knowledge of having cuneate fasciculus tracts concentrated in the lateral part of posterior funiculus.
Collapse
Affiliation(s)
- Ahmet Fatih Atik
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| | - Evan Calabrese
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Robert Gramer
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Syed M Adil
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Promila Pagadala
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Novel Technique of Coregistered Intraoperative Computed Tomography and Preoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Navigation in Spinal Cord Tumor Resection. Ochsner J 2019; 19:43-48. [PMID: 30983901 DOI: 10.31486/toj.18.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Intradural spinal tumors are surgically challenging lesions, and intraoperative spinal navigation offers clear potential assistance. While intraoperative computed tomography (iCT) of bony anatomy is routinely performed, coregistration with magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to facilitate intradural spinal tumor resection is not widely described. We present 2 cases in which iCT was coregistered with MRI and DTI for navigational guidance in the resection of intradural spinal tumors to assess technical feasibility and surgical efficacy. Case Series: Navigation using coregistered iCT/MRI was used in the resection of one extramedullary and one intramedullary cervicomedullary tumor. The iCT was obtained following open midline exposure of bony anatomy. The images were then coregistered with preoperative MRI sequences to allow for optical tracking navigation via an optical tracking station (Brainlab). For the intramedullary tumor, preoperative DTI sequences were also coregistered for enhanced identification of relevant anatomy. Navigational accuracy for all cases was confirmed to be acceptable at the level of the posterior bony elements, the dura, and the tumor-parenchyma interface. Conclusion: The coregistration of preoperative MRI sequences and iCT images allowed for meaningfully enhanced navigation during resection. In the case involving the intramedullary cervicomedullary tumor with marked distortion of longitudinal tracts, iCT/DTI navigation allowed for accurate visualization of critical structures and facilitated delineation of tumor margins that otherwise would have been difficult. The use of combined iCT and preoperative MRI/DTI neuronavigational guidance is an effective approach in the resection of intradural extramedullary and intramedullary spinal cord tumors.
Collapse
|
22
|
Granata F, Racchiusa S, Mormina E, Barresi V, Garufi G, Grasso G, Salpietro FM, Longo M, Alafaci C. Presurgical role of MRI tractography in a case of extensive cervicothoracic spinal ependymoma. Surg Neurol Int 2017; 8:56. [PMID: 28540122 PMCID: PMC5421221 DOI: 10.4103/sni.sni_33_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/05/2017] [Indexed: 12/04/2022] Open
Abstract
Background: Intramedullary spinal ependymoma is a tumor, hardly characterizable with conventional magnetic resonance (MR) imaging only. MR diffusion tensor imaging (DTI) with three-dimensional fiber-tracking reconstructions allows the evaluation of the relationship between neoplasm and white matter fiber tracts, being a powerful tool in presurgical planning. We present DTI findings in a case of a young female with an extensive cervicothoracic spinal ependymoma. Case Description: The patient complained of a 2-month history of acute urinary retention, weakness and numbness on the lower limbs and the upper left limb. She underwent MR imaging that showed an extensive cervicothoracic spinal mass, difficult to characterize with conventional MR sequences. DTI showed peripherally displacement of fibers, without involvement of the spinal cord, findings consistent with an ependymoma. The patient underwent surgery with a complete resection “en bloc” of the lesion, which showed clear cleavage planes, as detected by DTI. Histopathological findings confirmed the diagnosis of ependymoma. Conclusions: DTI is a useful tool in presurgical planning, helping in differentiating not infiltrating neoplasms, such as spinal ependymomas, from other infiltrative and more aggressive neoplasms, which are considered not resectable.
Collapse
Affiliation(s)
- Francesca Granata
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Sergio Racchiusa
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Valeria Barresi
- Section of Pathological Anatomy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Giada Garufi
- Section of Neurosurgery, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Giovanni Grasso
- Section of Neurosurgery, Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo, Italy
| | | | - Marcello Longo
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Concetta Alafaci
- Section of Neurosurgery, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|