1
|
Oh CH, Cho SB, Kwon H. Evaluating Image Quality and Radiation Dose in Low-Dose Thoraco-Abdominal CT Angiography with a Tin Filter for Patients with Aortic Disease. J Clin Med 2024; 13:996. [PMID: 38398309 PMCID: PMC10889810 DOI: 10.3390/jcm13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Background: We aimed to compared radiation exposure and image quality between tin-filter-based and standard dose thoraco-abdominal computed tomography angiography (TACTA) protocols, aiming to address a gap in the existing literature. Methods: In this retrospective study, ninety consecutive patients undergoing TACTA were included. Of these, 45 followed a routine standard-dose protocol (ST100kV), and 45 underwent a low-dose protocol with a tin filter (TF100kV). Radiation metrics were compared. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) were calculated for the thoracic and abdominal aorta and right common iliac artery. Two independent readers assessed the image noise, image contrast, sharpness, and subjective image quality. Results: The mean dose for the TF100kV group was significantly lower (DLP 128.25 ± 18.18 mGy*cm vs. 662.75 ± 181.29, p < 0.001; CTDIvol 1.83 ± 0.25 mGy vs. 9.28 ± 2.17, p = 0.001), with an effective dose close to 2.3 mSv (2.31 ± 0.33 mSv; p < 0.001). The TF100kV group demonstrated greater dose efficiency (FOM, thoracic aorta: 36.70 ± 22.77 vs. 13.96 ± 13.18 mSv-1, p < 0.001) compared to the ST100kV group. Conclusions: Dedicated low-dose TACTA using a tin filter can significantly reduce the radiation dose while maintaining sufficient diagnostic image quality.
Collapse
Affiliation(s)
- Chang Hoon Oh
- Department of Radiology, Ewha Womans Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Soo Buem Cho
- Department of Radiology, Ewha Womans Seoul Hospital, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyeyoung Kwon
- Department of Radiology, Chungnam University Hospital, School of Medicine, Chungnam University, Daejeon 35015, Republic of Korea;
| |
Collapse
|
2
|
Greffier J, Fitton I, Ngoc Ty CV, Frandon J, Beregi JP, Dabli D. Impact of tin filter on the image quality of ultra-low dose chest CT: A phantom study on three CT systems. Diagn Interv Imaging 2023; 104:506-512. [PMID: 37286462 DOI: 10.1016/j.diii.2023.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The purpose of this study was to assess the impact of a tin filter on the image quality of ultra-low dose (ULD) chest computed tomography (CT) on three different CT systems. MATERIALS AND METHODS An image quality phantom was scanned on three CT systems including two split-filter dual-energy CT (SFCT-1 and SFCT-2) scanners and one dual-source CT scanner (DSCT). Acquisitions were performed with a volume CT dose index (CTDIvol) of 0.4 mGy, first at 100 kVp without tin filter (Sn), and second, at Sn100/Sn140 kVp, Sn100/Sn110/Sn120/Sn130/Sn140/Sn150 kVp and Sn100/Sn150 kVp for SFCT-1, SFCT-2 and DSCT respectively. Noise-power-spectrum and task-based transfer function were computed. The detectability index (d') was computed to model the detection of two chest lesions. RESULTS For DSCT and SFCT-1, noise magnitude values were higher with 100kVp than with Sn100 kVp and with Sn140 kVp or Sn150 kVp than with Sn100 kVp. For SFCT-2, noise magnitude increased from Sn110 kVp to Sn150 kVp and was higher at Sn100 kVp than at Sn110 kVp. For most kVp with the tin filter, the noise amplitude values were lower than those obtained at 100 kVp. For each CT system, noise texture and spatial resolution values were similar with 100 kVp and with all kVp used with a tin filter. For all simulated chest lesions, the highest d' values were obtained at Sn100 kVp for SFCT-1 and DSCT and at Sn110 kVp for SFCT-2. CONCLUSION For ULD chest CT protocols, the lowest noise magnitude and highest detectability values for simulated chest lesions are obtained with Sn100 kVp for the SFCT-1 and DSCT CT systems and at Sn110 kVp for SFCT-2.
Collapse
Affiliation(s)
- Joël Greffier
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France.
| | - Isabelle Fitton
- Université Paris Cité, 75006 Paris, France, Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Claire Van Ngoc Ty
- Université Paris Cité, 75006 Paris, France, Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Julien Frandon
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Jean-Paul Beregi
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Djamel Dabli
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| |
Collapse
|
3
|
Zhou Y, Eastman E, Lee C, Scott A. Optimal dose determination for coronary artery calcium scoring CT at standard tube voltage. Eur J Radiol 2023; 167:111029. [PMID: 37579562 DOI: 10.1016/j.ejrad.2023.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Coronary artery calcium scoring (CACs) at 120 kVp is the standard practice. It is an important tool for preventative management of asymptomatic patients. However, the current dose delivery, albeit patient-size dependent, does not connect the CACs specific noise requirement to the dose, causing significant dose variations. We propose a new approach for optimal dose determination by incorporating the patient-size dependent noise threshold. METHODS A polyethylene-based Mercury phantom of various diameters was scanned with a dual-source CT using CACs gating at different volume CT dose index (CTDIvol). The relationship of noise to the diameter and CTDIvol was obtained. The phantom diameter was then converted to the patient chest diameter through a retrospective analysis of a clinical cohort (N = 140). Finally, the patient-size dependent noise threshold was applied, and the optimal dose was derived. The prescribed doses were compared with those from a clinical CACs cohort (N = 262). RESULTS A power-exponential relationship was found for the noise versus CTDIvol and phantom diameter (R2 = 0.988). The phantom diameter versus the patient effective diameter was found to obey a linear relationship (R2 = 0.998). Two noise threshold settings were made for dose options: one for more dose saving, and another for tighter noise constraint. Retrospective comparisons with clinical CACs studies showed an average dose reduction of 23% in 80.5% of the cases with option 1. The average dose reduction is 23% in 77.9% of the cases with option 2. CONCLUSION A new optimal dose scheme dictated by the target noise was established for CACs at 120 kVp. The proposed dose modulation can serve as the baseline from which further dose reduction is possible.
Collapse
Affiliation(s)
- Yifang Zhou
- Department of Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Emi Eastman
- Department of Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Christina Lee
- Department of Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Alexander Scott
- Department of Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Duerden L, O’Brien H, Doshi S, Charters P, King L, Hudson BJ, Rodrigues JCL. Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose. BJR Open 2023; 4:20210056. [PMID: 36105418 PMCID: PMC9459860 DOI: 10.1259/bjro.20210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Imaged scan length (z-axis coverage) is a simple parameter that can reduce CT dose without compromising image quality. In CT coronary angiography (CTCA), z-axis coverage may be planned using non-contrast calcium score scan (CaCS) to identify the relevant coronary anatomy. However, standardised Agatston CaCS is acquired at 120 kV which adds a relatively high contribution to total study dose and CaCS is no longer routinely recommended in UK guidelines. We evaluate an ultra-low dose unenhanced planning scan on CTCA scan length and effective radiation dose. Methods An ultra-low dose tin filter (Sn-filter) planning scan (100 kVp, maximum iterative reconstruction) was performed and used to plan the z-axis coverage on 48 consecutive CTCAs (62% men, 62 ± 13 years) compared with 47 CTCA planned using a localiser alone (46% men, 59 ± 12 years) between May and June 2019. Excess scanning beyond the ideal scan length was calculated for both groups. Estimations of radiation dose were also compared between the two groups. Results Addition of an ultra-low dose unenhanced planning scan to CTCA protocol was associated with reduction in overscanning with no impact on image quality. There was no significant difference in total study effective dose with the addition of the planning scan, which had an average dose-length product of 3 mGy.cm. (total study dose: Protocol A 2.1 mSv vs Protocol B 2.2 mSv, p = 0.92). Conclusion An ultra-low dose unenhanced planning scan facilitates optimal scan length for the diagnostic CTCA, reducing overscanning and preventing incomplete cardiac imaging with no significant dose penalty or impact on image quality. Advances in knowledge An ultra-low dose CTCA planning is feasible and effective at optimising scan length.
Collapse
Affiliation(s)
- Laura Duerden
- Royal United Hospitals Bath NHS Foundation Trust, Avon, United Kingdom
| | - Helen O’Brien
- Royal United Hospitals Bath NHS Foundation Trust, Avon, United Kingdom
| | - Susan Doshi
- Velindre Cancer Centre, Velindre University NHS Trust, Cardiff, United Kingdom
| | - Pia Charters
- Royal United Hospitals Bath NHS Foundation Trust, Avon, United Kingdom
| | - Laurence King
- Royal United Hospitals Bath NHS Foundation Trust, Avon, United Kingdom
| | | | | |
Collapse
|
5
|
Prognostic Value of Coronary Calcium Score in Asymptomatic Individuals: A Systematic Review. J Clin Med 2022; 11:jcm11195842. [PMID: 36233709 PMCID: PMC9573072 DOI: 10.3390/jcm11195842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Despite updated guidelines and technological developments that allow for an accurate diagnosis, many asymptomatic individuals have a high risk of developing CAD or cardiac events. The CAC score can estimate a correct risk level for these subjects, which is clinically significant for adequate management of risk factors and obtaining personalized preventive therapy. This systematic review aims to assess the prognostic value of CAC score in asymptomatic individuals. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, a systematic literature search was performed to identify original articles since 2010 that evaluated the prognostic value of CAC score in asymptomatic individuals. The quality of the included studies was assessed by the QUIPS tool. A total of 45 articles were selected. Many of these (25 studies) evaluated the prognostic value of CAC score in asymptomatic subjects. In comparison, others (20 studies) evaluated the association of CAC score with other clinical parameters and imaging modalities or the comparison with computed tomography coronary angiography (CTCA). Our findings showed that the CAC score provides valuable prognostic information for predicting CAD risk in asymptomatic individuals.
Collapse
|
6
|
May M, Heiss R, Koehnen J, Wetzl M, Wiesmueller M, Treutlein C, Braeuer L, Uder M, Kopp M. Personalized Chest Computed Tomography: Minimum Diagnostic Radiation Dose Levels for the Detection of Fibrosis, Nodules, and Pneumonia. Invest Radiol 2022; 57:148-156. [PMID: 34468413 PMCID: PMC8826613 DOI: 10.1097/rli.0000000000000822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the minimum diagnostic radiation dose level for the detection of high-resolution (HR) lung structures, pulmonary nodules (PNs), and infectious diseases (IDs). MATERIALS AND METHODS A preclinical chest computed tomography (CT) trial was performed with a human cadaver without known lung disease with incremental radiation dose using tin filter-based spectral shaping protocols. A subset of protocols for full diagnostic evaluation of HR, PN, and ID structures was translated to clinical routine. Also, a minimum diagnostic radiation dose protocol was defined (MIN). These protocols were prospectively applied over 5 months in the clinical routine under consideration of the individual clinical indication. We compared radiation dose parameters, objective and subjective image quality (IQ). RESULTS The HR protocol was performed in 38 patients (43%), PN in 21 patients (24%), ID in 20 patients (23%), and MIN in 9 patients (10%). Radiation dose differed significantly among HR, PN, and ID (5.4, 1.2, and 0.6 mGy, respectively; P < 0.001). Differences between ID and MIN (0.2 mGy) were not significant (P = 0.262). Dose-normalized contrast-to-noise ratio was comparable among all groups (P = 0.087). Overall IQ was perfect for the HR protocol (median, 5.0) and decreased for PN (4.5), ID-CT (4.3), and MIN-CT (2.5). The delineation of disease-specific findings was high in all dedicated protocols (HR, 5.0; PN, 5.0; ID, 4.5). The MIN protocol had borderline IQ for PN and ID lesions but was insufficient for HR structures. The dose reductions were 78% (PN), 89% (ID), and 97% (MIN) compared with the HR protocols. CONCLUSIONS Personalized chest CT tailored to the clinical indications leads to substantial dose reduction without reducing interpretability. More than 50% of patients can benefit from such individual adaptation in a clinical routine setting. Personalized radiation dose adjustments with validated diagnostic IQ are especially preferable for evaluating ID and PN lesions.
Collapse
Affiliation(s)
- Matthias May
- From the Department of Radiology, University Hospital Erlangen
| | - Rafael Heiss
- From the Department of Radiology, University Hospital Erlangen
| | - Julia Koehnen
- From the Department of Radiology, University Hospital Erlangen
| | - Matthias Wetzl
- From the Department of Radiology, University Hospital Erlangen
| | | | | | - Lars Braeuer
- Institute of Anatomy, Chair II, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Uder
- From the Department of Radiology, University Hospital Erlangen
| | - Markus Kopp
- From the Department of Radiology, University Hospital Erlangen
| |
Collapse
|
7
|
Zhang L, Li L, Feng G, Fan T, Jiang H, Wang Z. Advances in CT Techniques in Vascular Calcification. Front Cardiovasc Med 2021; 8:716822. [PMID: 34660718 PMCID: PMC8511450 DOI: 10.3389/fcvm.2021.716822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes, hypertension, and other diseases, increases the incidence and mortality of cardiovascular diseases. Therefore, the prevention and detection of vascular calcification play an important role. At present, various techniques have been applied to the analysis of vascular calcification, but clinical examination mainly depends on non-invasive and invasive imaging methods to detect and quantify. Computed tomography (CT), as a commonly used clinical examination method, can analyze vascular calcification. In recent years, with the development of technology, in addition to traditional CT, some emerging types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging and providing anatomical information for calcification. This review focuses on the latest application of various CT techniques in vascular calcification.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingpan Fan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Coronary artery calcium scoring at lower tube voltages - Dose determination and scoring mechanism. Eur J Radiol 2021; 139:109680. [PMID: 33848779 DOI: 10.1016/j.ejrad.2021.109680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Population dose has been a concern with coronary artery calcium scoring CT since it is performed in adults with borderline risk. Lower tube voltage acquisitions are appealing but there are no agreed schemes for reduced dose determination. Moreover, conventional scoring cannot be used without changing the multiple Agatston thresholds. METHODS By applying consistent calcium contrast-to-noise ratio to two anthropomorphic heart phantoms (medium and large) with 3-cm hydroxyapatite (HA) inserts, scanned using a dual-source CT, the relationship was derived between the volume CT dose index (CTDIvol) at lower tube voltages and the baseline CTDIvol at 120 kVp. The baseline CTDIvol was obtained using the noise thresholds from the images acquired at 120 kVp. To preserve the conventional Agatston thresholds, down-scaling with the found factors was applied to images acquired at lower voltages with a dynamic heart module and 1.2-5 mm inserts (50-400 mg/cc) on the coronary tracks. Scores were evaluated on the scaled images by six readers. RESULTS The CTDIvol at lower voltages was related to the baseline CTDIvol following a power form of the voltage (index 1.246), regardless of the phantom size. The baseline CTDIvol was 1.5 and 4.5 mGy, for the medium and large phantoms, respectively. Correspondingly, the reduced CTDIvol at 100-70 kVp were 1.28-0.76 mGy, and 3.57-2.32 mGy. The downscaling factors were 0.88-0.63. The calcium scores at lower voltages were found within 12 % of the ground-truths. CONCLUSION A vendor-independent approach was established to obtain the reduced dose and correct coronary calcium scores at lower tube voltages.
Collapse
|
9
|
Juntunen MAK, Sepponen P, Korhonen K, Pohjanen VM, Ketola J, Kotiaho A, Nieminen MT, Inkinen SI. Interior photon counting computed tomography for quantification of coronary artery calcium: pre-clinical phantom study. Biomed Phys Eng Express 2020; 6:055011. [PMID: 33444242 DOI: 10.1088/2057-1976/aba133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Computed tomography (CT) is the reference method for cardiac imaging, but concerns have been raised regarding the radiation dose of CT examinations. Recently, photon counting detectors (PCDs) and interior tomography, in which the radiation beam is limited to the organ-of-interest, have been suggested for patient dose reduction. In this study, we investigated interior PCD-CT (iPCD-CT) for non-enhanced quantification of coronary artery calcium (CAC) using an anthropomorphic torso phantom and ex vivo coronary artery samples. We reconstructed the iPCD-CT measurements with filtered back projection (FBP), iterative total variation (TV) regularization, padded FBP, and adaptively detruncated FBP and adaptively detruncated TV. We compared the organ doses between conventional CT and iPCD-CT geometries, assessed the truncation and cupping artifacts with iPCD-CT, and evaluated the CAC quantification performance of iPCD-CT. With approximately the same effective dose between conventional CT geometry (0.30 mSv) and interior PCD-CT with 10.2 cm field-of-view (0.27 mSv), the organ dose of the heart was increased by 52.3% with interior PCD-CT when compared to CT. Conversely, the organ doses to peripheral and radiosensitive organs, such as the stomach (55.0% reduction), were often reduced with interior PCD-CT. FBP and TV did not sufficiently reduce the truncation artifact, whereas padded FBP and adaptively detruncated FBP and TV yielded satisfactory truncation artifact reduction. Notably, the adaptive detruncation algorithm reduced truncation artifacts effectively when it was combined with reconstruction detrending. With this approach, the CAC quantification accuracy was good, and the coronary artery disease grade reclassification rate was particularly low (5.6%). Thus, our results confirm that CAC quantification can be performed with the interior CT geometry, that the artifacts are effectively reduced with suitable interior reconstruction methods, and that interior tomography provides efficient patient dose reduction.
Collapse
Affiliation(s)
- Mikael A K Juntunen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland. Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Vingiani V, Abadia AF, Schoepf UJ, Fischer AM, Varga-Szemes A, Sahbaee P, Allmendinger T, Giovagnoli DA, Hudson HT, Marano R, Tinnefeld FC, Martin SS. Individualized coronary calcium scoring at any tube voltage using a kV-independent reconstruction algorithm. Eur Radiol 2020; 30:5834-5840. [PMID: 32468107 DOI: 10.1007/s00330-020-06951-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE We prospectively investigate the feasibility of a patient specific automated tube voltage selection (ATVS)-based coronary artery calcium scoring (CACS) protocol, using a kV-independent reconstruction algorithm, to achieve significant dose reductions while maintaining the overall cardiac risk classification. METHODS Forty-three patients (mean age, 61.8 ± 9.0 years; 40% male) underwent a clinically indicated CACS scan at 120kVp, as well as an additional CACS acquisition using an individualized tube voltage between 70 and 130kVp based on the ATVS selection (CARE-kV). Datasets of the additional CACS scans were reconstructed using a kV-independent algorithm that allows for calcium scoring without changing the weighting threshold of 130HU, regardless of the tube voltage chosen for image acquisition. Agatston scores and radiation dose derived from the different ATVS-based CACS studies were compared to the standard acquisition at 120kVp. RESULTS Thirteen patients displayed a score of 0 and were correctly identified with the ATVS protocol. Agatston scores derived from the standard 120kVp (median, 33.4; IQR, 0-289.7) and the patient-tailored kV-independent protocol (median, 47.5; IQR, 0-287.5) showed no significant differences (p = 0.094). The intra-class correlation for Agatston scores derived from the two different protocols was excellent (ICC = 0.99). The mean dose-length-product was 29.8 ± 11.9 mGy × cm using the ATVS protocol and 31.7 ± 11.4 mGy × cm using the standard 120kVp protocol (p < 0.001). Additionally, 95% of patients were classified into the same risk category (0, 1-10, 11-100, 101-400, or > 400) using the patient-tailored protocol. CONCLUSIONS ATVS-based CACS, using a kV-independent algorithm, allows for high accuracy compared to the standard 120kVp scanning, while significantly reducing radiation dose parameters. KEY POINTS • ATVS allows for CT scanning with reduced radiation dose values. • KV-independent CACS is feasible at any tube voltage between 70 and 130 kVp. • ATVS applied to kV-independent CACS can significantly reduce the radiation dose.
Collapse
Affiliation(s)
- Vincenzo Vingiani
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA.,Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli - IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andres F Abadia
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA
| | - U Joseph Schoepf
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA.
| | - Andreas M Fischer
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA
| | - Pooyan Sahbaee
- Computed Tomography - Research & Development, Siemens Healthcare GmbH, Forchheim, Germany.,Siemens Medical Solutions USA, Malvern, PA, USA
| | - Thomas Allmendinger
- Computed Tomography - Research & Development, Siemens Healthcare GmbH, Forchheim, Germany
| | - Dante A Giovagnoli
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA
| | - H Todd Hudson
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA
| | - Riccardo Marano
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli - IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiona C Tinnefeld
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA
| | - Simon S Martin
- Department of Radiology and Radiological Sciences, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, USA.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Vingiani V, Abadia AF, Schoepf UJ, Fischer AM, Varga-Szemes A, Sahbaee P, Allmendinger T, Tesche C, Griffith LP, Marano R, Martin SS. Low-kV coronary artery calcium scoring with tin filtration using a kV-independent reconstruction algorithm. J Cardiovasc Comput Tomogr 2020; 14:246-250. [DOI: 10.1016/j.jcct.2019.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/16/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
|
12
|
Booij R, van der Werf NR, Budde RPJ, Bos D, van Straten M. Dose reduction for CT coronary calcium scoring with a calcium-aware image reconstruction technique: a phantom study. Eur Radiol 2020; 30:3346-3355. [PMID: 32072259 PMCID: PMC7248036 DOI: 10.1007/s00330-020-06709-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Objective To assess the dose reduction potential of a calcium-aware reconstruction technique, which aims at tube voltage-independent computed tomography (CT) numbers for calcium. Methods and materials A cardiothoracic phantom, mimicking three different patient sizes, was scanned with two calcium inserts (named D100 and CCI), containing calcifications varying in size and density. Tube voltage was varied both manually (range 70–150 and Sn100 kVp) and automatically. Tube current was automatically adapted to maintain reference image quality defined at 120 kVp. Data was reconstructed with the standard reconstruction technique (kernel Qr36) and the calcium-aware reconstruction technique (kernel Sa36). We assessed the radiation dose reduction potential (volumetric CT dose index values (CTDIvol)), noise (standard deviation (SD)), mean CT number (HU) of each calcification, and Agatston scores for varying kVp. Results were compared with the reference acquired at 120 kVp and reconstructed with Qr36. Results Automatic selection of the optimal tube voltage resulted in a CTDIvol reduction of 22%, 15%, and 12% compared with the reference for the small, medium, and large phantom, respectively. CT numbers differed up to 64% for the standard reconstruction and 11% for the calcium-aware reconstruction. Similarly, Agatston scores deviated up to 40% and 8% for the standard and calcium-aware reconstruction technique, respectively. Conclusion CT numbers remained consistent with comparable calcium scores when the calcium-aware image reconstruction technique was applied with varying tube voltage. Less consistency was observed in small calcifications with low density. Automatic reduction of tube voltage resulted in a dose reduction of up to 22%. Key Points • The calcium-aware image reconstruction technique allows for consistent CT numbers when varying the tube voltage. • Automatic reduction of tube voltage results in a reduced radiation exposure of up to 22%. • This study stresses the known limitations of the current Agatston score technique. Electronic supplementary material The online version of this article (10.1007/s00330-020-06709-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus MC, P.O. Box 2240, 3000 CA, Rotterdam, The Netherlands.
| | - Niels R van der Werf
- Department of Radiology & Nuclear Medicine, Erasmus MC, P.O. Box 2240, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology & Nuclear Medicine, Erasmus MC, P.O. Box 2240, 3000 CA, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Radiology & Nuclear Medicine, Erasmus MC, P.O. Box 2240, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel van Straten
- Department of Radiology & Nuclear Medicine, Erasmus MC, P.O. Box 2240, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Levi J, Eck BL, Fahmi R, Wu H, Vembar M, Dhanantwari A, Fares A, Bezerra HG, Wilson DL. Calibration-free beam hardening correction for myocardial perfusion imaging using CT. Med Phys 2019; 46:1648-1662. [PMID: 30689216 PMCID: PMC6453761 DOI: 10.1002/mp.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Computed tomography myocardial perfusion imaging (CT-MPI) and coronary CTA have the potential to make CT an ideal noninvasive imaging gatekeeper exam for invasive coronary angiography. However, beam hardening (BH) artifacts prevent accurate blood flow calculation in CT-MPI. BH correction methods require either energy-sensitive CT, not widely available, or typically, a calibration-based method in conventional CT. We propose a calibration-free, automatic BH correction (ABHC) method suitable for CT-MPI and evaluate its ability to reduce BH artifacts in single "static-perfusion" images and to create accurate myocardial blood flow (MBF) in dynamic CT-MPI. METHODS In the algorithm, we used input CT DICOM images and iteratively optimized parameters in a polynomial BH correction until a BH-sensitive cost function was minimized on output images. An input image was segmented into a soft tissue image and a highly attenuating material (HAM) image containing bones and regions of high iodine concentrations, using mean HU and temporal enhancement properties. We forward projected HAM, corrected projection values according to a polynomial correction, and reconstructed a correction image to obtain the current iteration's BH corrected image. The cost function was sensitive to BH streak artifacts and cupping. We evaluated the algorithm on simulated CT and physical phantom images, and on preclinical porcine with optional coronary obstruction and clinical CT-MPI data. Assessments included measures of BH artifact in single images as well as MBF estimates. We obtained CT images on a prototype spectral detector CT (SDCT, Philips Healthcare) scanner that provided both conventional and virtual keV images, allowing us to quantitatively compare corrected CT images to virtual keV images. To stress test the method, we evaluated results on images from a different scanner (iCT, Philips Healthcare) and different kVp values. RESULTS In a CT-simulated digital phantom consisting of water with iodine cylinder insets, BH streak artifacts between simulated iodine inserts were reduced from 13 ± 2 to 0 ± 1 HU. In a similar physical phantom having higher iodine concentrations, BH streak artifacts were reduced from 48 ± 6 to 1 ± 5 HU and cupping was reduced by 86%, from 248 to 23 HU. In preclinical CT-MPI images without coronary obstruction, BH artifact was reduced from 24 ± 6 HU to less than 5 ± 4 HU at peak enhancement. Standard deviation across different regions of interest (ROI) along the myocardium was reduced from 13.26 to 6.86 HU for ABHC, comparing favorably to measurements in the corresponding virtual keV image. Corrections greatly reduced variations in preclinical MBF maps as obtained in normal animals without obstruction (FFR = 1). Coefficients of variations were 22% (conventional CT), 9% (ABHC), and 5% (virtual keV). Moreover, variations in flow tended to be localized after ABHC, giving result which would not be confused with a flow deficit in a coronary vessel territory. CONCLUSION The automated algorithm can be used to reduce BH artifact in conventional CT and improve CT-MPI accuracy particularly by removing regions of reduced estimated flow which might be misinterpreted as flow deficits.
Collapse
Affiliation(s)
- Jacob Levi
- Department of PhysicsCase Western Reserve UniversityClevelandOH44106USA
| | - Brendan L. Eck
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Rachid Fahmi
- Research and Clinical CollaborationsSiemens HealthineersKnoxvilleTNUSA
| | - Hao Wu
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | | | | | - Anas Fares
- Cardiovascular Imaging Core LaboratoryHarrington Heart & Vascular InstituteUniversity Hospitals Case Medical CenterClevelandOH44106USA
| | - Hiram G. Bezerra
- Cardiovascular Imaging Core LaboratoryHarrington Heart & Vascular InstituteUniversity Hospitals Case Medical CenterClevelandOH44106USA
| | - David L. Wilson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
- Department of RadiologyCase Western Reserve UniversityClevelandOH44106USA
| |
Collapse
|
14
|
Choi AD, Leifer ES, Yu JH, Datta T, Bronson KC, Rollison SF, Schuzer JL, Steveson C, Shanbhag SM, Chen MY. Reduced radiation dose with model based iterative reconstruction coronary artery calcium scoring. Eur J Radiol 2019; 111:1-5. [DOI: 10.1016/j.ejrad.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
|
15
|
Tesche C, Duguay TM, Schoepf UJ, van Assen M, De Cecco CN, Albrecht MH, Varga-Szemes A, Bayer RR, Ebersberger U, Nance JW, Thilo C. Current and future applications of CT coronary calcium assessment. Expert Rev Cardiovasc Ther 2018; 16:441-453. [PMID: 29734858 DOI: 10.1080/14779072.2018.1474347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Computed tomographic (CT) coronary artery calcium scoring (CAC) has been validated as a well-established screening method for cardiovascular risk stratification and treatment management that is used in addition to traditional risk factors. The purpose of this review is to present an update on current and future applications of CAC. Areas covered: The topic of CAC is summarized from its introduction to current application with focus on the validation and clinical integration including cardiovascular risk prediction and outcome, cost-effectiveness, impact on downstream medical testing, and the technical advances in scanner and software technology that are shaping the future of CAC. Furthermore, this review aims to provide guidance for the appropriate clinical use of CAC. Expert commentary: CAC is a well-established screening test in preventive care that is underused in daily clinical practice. The widespread clinical implementation of CAC will be decided by future technical advances in CT image acquisition, cost-effectiveness, and reimbursement status.
Collapse
Affiliation(s)
- Christian Tesche
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,b Department of Cardiology and Intensive Care Medicine , Heart Center Munich-Bogenhausen , Munich , Germany
| | - Taylor M Duguay
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - U Joseph Schoepf
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,c Division of Cardiology, Department of Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Marly van Assen
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,d Center for Medical Imaging North East Netherlands , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Carlo N De Cecco
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Moritz H Albrecht
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,e Department of Diagnostic and Interventional Radiology , University Hospital Frankfurt , Frankfurt , Germany
| | - Akos Varga-Szemes
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Richard R Bayer
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,c Division of Cardiology, Department of Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Ullrich Ebersberger
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,b Department of Cardiology and Intensive Care Medicine , Heart Center Munich-Bogenhausen , Munich , Germany
| | - John W Nance
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Christian Thilo
- f Department of Internal Medicine I - Cardiology , Central Hospital of Augsburg , Augsburg , Germany
| |
Collapse
|
16
|
Apfaltrer G, Albrecht MH, Schoepf UJ, Duguay TM, De Cecco CN, Nance JW, De Santis D, Apfaltrer P, Eid MH, Eason CD, Thompson ZM, Bauer MJ, Varga-Szemes A, Jacobs BE, Sorantin E, Tesche C. High-pitch low-voltage CT coronary artery calcium scoring with tin filtration: accuracy and radiation dose reduction. Eur Radiol 2018; 28:3097-3104. [DOI: 10.1007/s00330-017-5249-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
17
|
Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality. J Cardiovasc Comput Tomogr 2017; 11:354-359. [DOI: 10.1016/j.jcct.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 11/23/2022]
|