1
|
Wang S, Tong X, Zhang J, Fan Y, Wei W, Li J, Liu Y, Hu M, Chen Q, Liu L. Estimation of renal function using iodine maps in dual-energy spectral computed tomography urography: a feasibility and accuracy study. Abdom Radiol (NY) 2024; 49:997-1005. [PMID: 38244037 DOI: 10.1007/s00261-023-04146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
PURPOSE To explore the feasibility of measuring glomerular filtration rate (GFR) using iodine maps in dual-energy spectral computed tomography urography (DEsCTU) and correlate them with the estimated GFR (eGFR) based on the equation of creatinine-cystatin C. MATERIALS AND METHODS One hundred and twenty-eight patients referred for DEsCTU were retrospectively enrolled. The DEsCTU protocol included non-contrast, nephrographic, and excretory phase imaging. The CT-derived GFR was calculated using the above 3-phase iodine maps (CT-GFRiodine) and 120 kVp-like images (CT-GFR120kvp) separately. CT-GFRiodine and CT-GFR120kvp were compared with eGFR using paired t-test, correlation analysis, and Bland-Altman plots. The receiver operating characteristic curves were used to test the renal function diagnostic performance with CT-GFR120kvp and CT-GFRiodine. RESULTS The difference between eGFR (89.91 ± 18.45 ml·min-1·1.73 m-2) as reference standard and CT-GFRiodine (90.06 ± 20.89 ml·min-1·1.73 m-2) was not statistically significant, showing excellent correlation (r = 0.88, P < 0.001) and agreement (± 19.75 ml·min-1·1.73 m-2, P = 0.866). The correlation between eGFR and CT-GFR120kvp (66.13 ± 19.18 ml·min-1·1.73 m-2) was poor (r = 0.36, P < 0.001), and the agreement was poor (± 40.65 ml·min-1·1.73 m-2, P < 0.001). There were 62 patients with normal renal function and 66 patients with decreased renal function based on eGFR. The CT-GFRiodine had the largest area under the curve (AUC) for distinguishing between normal and decreased renal function (AUC = 0.951). CONCLUSION The GFR can be calculated accurately using iodine maps in DEsCTU. DEsCTU could be a non-invasive and reliable one-stop-shop imaging technique for evaluating both the urinary tract morphology and renal function.
Collapse
Affiliation(s)
- Shigeng Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Xiaoyu Tong
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Jingyi Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Yong Fan
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | | | - Yijun Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Mengting Hu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Qiye Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Urology, Shahekou District, Lianhe Road, Dalian, China
| | - Lei Liu
- Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Li X, Wu W, Yuan Y, Zhu Z, Liu X, Xiao D, Long X. CT energy spectral parameters of creeping fat in Crohn's disease and correlation with inflammatory activity. Insights Imaging 2024; 15:10. [PMID: 38228821 DOI: 10.1186/s13244-023-01592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/09/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVES Creeping fat is a kind of unique abnormal mesenteric tissue at the sites of diseased bowel of Crohn's disease. By using dual-energy CT enterography, this study aimed to evaluate the feasibility of spectral parameters in the quantitative analysis of mesenteric adipose tissue or creeping fat. METHODS In this study, patients with known or suspected Crohn's disease who underwent dual-energy CT enterography from March 1, 2019, to March 31, 2021, were enrolled. Among them, 40 patients with surgery and pathology-proven creeping fat were selected as the creeping fat Crohn's disease group, and 40 normal patients were selected as the control group. The quantitative spectral parameters including the slope of the Hounsfield unit curve, normalised fat-water concentration, normalised fat-iodine concentration, and normalised fat volume fraction at the enteric phases were obtained. Mann-Whitney U test, Kruskal-Wallis H test, and receiver operating characteristic curve analysis were applied to compare quantitative parameters among various groups. RESULTS A significant difference was observed in the slope of the Hounsfield unit curve, normalised fat-water concentration, normalised fat-iodine concentration, and normalised fat volume fraction between mesenteric adipose tissue and creeping fat with Crohn's disease at the enteric phase (all p < 0.001). The slope of the Hounsfield unit curve of creeping fat at the enteric phase had a better capability to distinguish inactive and active Crohn's disease (AUC = 0.93, p < 0.001). CONCLUSION Dual-energy CT enterography with quantitative spectral parameters is a potentially novel noninvasive tool for evaluating creeping fat in Crohn's disease. CRITICAL RELEVANCE STATEMENT Energy spectral parameters of creeping fat in Crohn's disease are significantly different from normal mesenteric adipose tissues and are correlated with inflammatory activity. KEY POINTS • Dual-energy CT enterography allows quantitatively assessing creeping fat with spectral parameters. • The creeping fat has distinct spectral parameters to normal mesenteric adipose. • The spectral parameters accurately differentiate active and inactive Crohn's disease.
Collapse
Affiliation(s)
- Xianchu Li
- Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Wei Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yuan
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Zhiming Zhu
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Liu LP, Hwang M, Hung M, Soulen MC, Schaer TP, Shapira N, Noël PB. Non-invasive mass and temperature quantifications with spectral CT. Sci Rep 2023; 13:6109. [PMID: 37059839 PMCID: PMC10104802 DOI: 10.1038/s41598-023-33264-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/11/2023] [Indexed: 04/16/2023] Open
Abstract
Spectral CT has been increasingly implemented clinically for its better characterization and quantification of materials through its multi-energy results. It also facilitates calculation of physical density, allowing for non-invasive mass measurements and temperature evaluations by manipulating the definition of physical density and thermal volumetric expansion, respectively. To develop spectral physical density quantifications, original and parametrized Alvarez-Macovski model and electron density-physical density model were validated with a phantom. The best physical density model was then implemented on clinical spectral CT scans of ex vivo bovine muscle to determine the accuracy and effect of acquisition parameters on mass measurements. In addition, the relationship between physical density and changes in temperature was evaluated by scanning and subjecting the tissue to a range of temperatures. The parametrized Alvarez-Macovski model performed best in both model development and validation with errors within ± 0.02 g/mL. No effect from acquisition parameters was observed in mass measurements, which demonstrated accuracy with a maximum percent error of 0.34%. Furthermore, physical density was strongly correlated (R of 0.9781) to temperature changes through thermal volumetric expansion. Accurate and precise spectral physical density quantifications enable non-invasive mass measurements for pathological detection and temperature evaluation for thermal therapy monitoring in interventional oncology.
Collapse
Affiliation(s)
- Leening P Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.
| | | | - Matthew Hung
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Michael C Soulen
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Thomas P Schaer
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Nadav Shapira
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Peter B Noël
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
4
|
Fan PL, Chu J, Wang Q, Wang C. The clinical value of dual-energy computed tomography and diffusion-weighted imaging in the context of liver cancer: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:862-868. [PMID: 35338779 DOI: 10.1002/jcu.23197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The dual-energy computed tomography (DECT) and diffusion-weighted magnetic resonance imaging (DWI-MRI) are used to diagnose liver cancer. The clinical value of these two examination methods needs to be further summarized. We collected and summarized relevant literature published from 2011 to 2021. The diagnostic performance of DECT was assessed between conventional computed tomography and DWI-MRI. DWI-MRI had a 69% sensitivity for detecting small hepatocellular carcinoma (HCC) lesions and a 60% diagnostic specificity for differentiating between types of HCC lesions. DECT had a sensitivity to small liver lesions (<1 cm) of 69%, and the diagnostic specificity for HCC and metastasis was about 60%. DWI was more sensitive (90.3% vs. 74.9%) and accurate (91.9% vs. 76.9%) in diagnosing HCC compared with conventional MRI sequencing. With the aid of contrast media, DWI-MRI had 90.0% specificity for detecting small HCCs (smaller than 1 cm). Furthermore, DWI-MRI not only provided physicians with valuable diagnostic information but also delivered histological grading information, with 78% accuracy for all benign lesions and 71% for solid lesions. DECT had relatively high sensitivity and required a lower contrast medium dose. With standardized quantitative parameters, it can be an extremely useful tool for HCC surveillance. DWI-MRI is the preferred imaging process as it produces high-contrast images for supporting an early diagnosis (high sensitivity and specificity) and provides histological information using non-ionizing radiation.
Collapse
Affiliation(s)
- Pei-Lin Fan
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| | - Jun Chu
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| | - Qing Wang
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| | - Chen Wang
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Seo JY, Joo I, Yoon JH, Kang HJ, Kim S, Kim JH, Ahn C, Lee JM. Deep learning-based reconstruction of virtual monoenergetic images of kVp-switching dual energy CT for evaluation of hypervascular liver lesions: Comparison with standard reconstruction technique. Eur J Radiol 2022; 154:110390. [PMID: 35724579 DOI: 10.1016/j.ejrad.2022.110390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate clinical applicability of deep learning(DL)-based reconstruction of virtual monoenergetic images(VMIs) of arterial phase liver CT obtained by rapid kVp-switching dual-energy CT for evaluation of hypervascular liver lesions. MATERIALS AND METHODS We retrospectively included 109 patients who had available late arterial phase liver CT images of the liver obtained with a rapid switching kVp DECT scanner for suspicious intra-abdominal malignancies. Two VMIs of 70 keV and 40 keV were reconstructed using adaptive statistical iterative reconstruction (ASiR-V) for arterial phase scans. VMIs at 40 keV were additionally reconstructed with a vendor-agnostic DL-based reconstruction technique (ClariCT.AI, ClariPi, DL 40 keV). Qualitative, quantitative image quality and subjective diagnostic acceptability were compared according to reconstruction techniques. RESULTS In qualitative analysis, DL 40 keV images showed less image noise (4.55 vs 3.11 vs 3.95, p < 0.001), better image sharpness (4.75 vs 4.16 vs 4.3, p < 0.001), better image contrast (4.98 vs 4.72 vs 4.19, p < 0.017), better lesion conspicuity (4.61 vs 4.23 vs 3.4, p < 0.001) and diagnostic acceptability (4.59 vs 3.88 vs 4.09, p < 0.001) compared with ASiR-V 40 keV or 70 keV image sets. In quantitative analysis, DL 40 keV significantly reduced image noise relative to ASiR-V 40 keV images (49.9%, p < 0.001) and ASiR-V 70 keV images (85.2%, p = 0.012). DL 40 keV images showed significantly higher CNRlesion to the liver and SNRliver than ASiR-V 40 keV image and 70 keV images (p < 0.001). CONCLUSION DL-based reconstruction of 40 keV images using vendor-agnostic software showed greater noise reduction, better lesion conspicuity, image contrast, image sharpness, and higher overall image diagnostic acceptability than ASiR for 40 keV or 70 keV images in patients with hypervascular liver lesions.
Collapse
Affiliation(s)
- June Young Seo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sewoo Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea; Research Institute, ClariPi, Seoul, Republic of Korea
| | - Chulkyun Ahn
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Research Institute, ClariPi, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Mahmood U, Bates DDB, Erdi YE, Mannelli L, Corrias G, Kanan C. Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans. Diagnostics (Basel) 2022; 12:672. [PMID: 35328225 PMCID: PMC8947702 DOI: 10.3390/diagnostics12030672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
We map single energy CT (SECT) scans to synthetic dual-energy CT (synth-DECT) material density iodine (MDI) scans using deep learning (DL) and demonstrate their value for liver segmentation. A 2D pix2pix (P2P) network was trained on 100 abdominal DECT scans to infer synth-DECT MDI scans from SECT scans. The source and target domain were paired with DECT monochromatic 70 keV and MDI scans. The trained P2P algorithm then transformed 140 public SECT scans to synth-DECT scans. We split 131 scans into 60% train, 20% tune, and 20% held-out test to train four existing liver segmentation frameworks. The remaining nine low-dose SECT scans tested system generalization. Segmentation accuracy was measured with the dice coefficient (DSC). The DSC per slice was computed to identify sources of error. With synth-DECT (and SECT) scans, an average DSC score of 0.93±0.06 (0.89±0.01) and 0.89±0.01 (0.81±0.02) was achieved on the held-out and generalization test sets. Synth-DECT-trained systems required less data to perform as well as SECT-trained systems. Low DSC scores were primarily observed around the scan margin or due to non-liver tissue or distortions within ground-truth annotations. In general, training with synth-DECT scans resulted in improved segmentation performance with less data.
Collapse
Affiliation(s)
- Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - David D. B. Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Yusuf E. Erdi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | | | - Giuseppe Corrias
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy;
| | - Christopher Kanan
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA;
| |
Collapse
|
7
|
Green CA, Solomon JB, Ruchala KJ, Samei E. Design and implementation of a practical quality control program for dual-energy CT. J Appl Clin Med Phys 2021; 22:249-260. [PMID: 34472700 PMCID: PMC8504583 DOI: 10.1002/acm2.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
A novel routine dual‐energy computed tomography (DECT) quality control (QC) program was developed to address the current deficiency of routine QC for this technology. The dual‐energy quality control (DEQC) program features (1) a practical phantom with clinically relevant materials and concentrations, (2) a clinically relevant acquisition, reconstruction, and postprocessing protocol, and (3) a fully automated analysis software to extract quantitative data for database storage and trend analysis. The phantom, designed for easy set up for standalone or adjacent imaging next to the ACR phantom, was made in collaboration with an industry partner and informed by clinical needs to have four iodine inserts (0.5, 1, 2, and 5 mg/ml) and one calcium insert (100 mg/ml) equally spaced in a cylindrical water‐equivalent background. The imaging protocol was based on a clinical DECT abdominal protocol capable of producing material specific concentration maps, virtual unenhanced images, and virtual monochromatic images. The QC automated analysis software uses open‐source technologies which integrates well with our current automated CT QC database. The QC program was tested on a GE 750 HD scanner and two Siemens SOMATOM FLASH scanners over a 3‐month period. The automated algorithm correctly identified the appropriate region of interest (ROI) locations and stores measured values in a database for monitoring and trend analysis. Slight variations in protocol settings were noted based on manufacturer. Overall, the project proved to provide a convenient and dependable clinical tool for routine oversight of DE CT imaging within the clinic.
Collapse
Affiliation(s)
- Crystal A Green
- Department of Radiology, Clinical Imaging Physics Group, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin B Solomon
- Clinical Imaging Physics Group, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Ehsan Samei
- Department of Radiology, Clinical Imaging Physics Group, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Tsurusaki M, Sofue K, Hori M, Sasaki K, Ishii K, Murakami T, Kudo M. Dual-Energy Computed Tomography of the Liver: Uses in Clinical Practices and Applications. Diagnostics (Basel) 2021; 11:diagnostics11020161. [PMID: 33499201 PMCID: PMC7912647 DOI: 10.3390/diagnostics11020161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Dual-energy computed tomography (DECT) is an imaging technique based on data acquisition at two different energy settings. Recent advances in CT have allowed data acquisitions and simultaneous analyses of X-rays at two energy levels, and have resulted in novel developments in the field of abdominal imaging. The use of low and high X-ray tube voltages in DECT provide fused images that improve the detection of liver tumors owing to the higher contrast-to-noise ratio (CNR) of the tumor compared with the liver. The use of contrast agents in CT scanning improves image quality by enhancing the CNR and signal-to-noise ratio while reducing beam-hardening artifacts. DECT can improve detection and characterization of hepatic abnormalities, including mass lesions. The technique can also be used for the diagnosis of steatosis and iron overload. This article reviews and illustrates the different applications of DECT in liver imaging.
Collapse
Affiliation(s)
- Masakatsu Tsurusaki
- Department of Radiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-366-0221 (ext. 3133); Fax: +81-72-367-1685
| | - Keitaro Sofue
- Department of Radiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (K.S.); (M.H.); (T.M.)
| | - Masatoshi Hori
- Department of Radiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (K.S.); (M.H.); (T.M.)
| | - Kosuke Sasaki
- CT Research Group, GE Healthcare Japan, Hino 191-8503, Japan;
| | - Kazunari Ishii
- Department of Radiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan;
| | - Takamichi Murakami
- Department of Radiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (K.S.); (M.H.); (T.M.)
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University, Faculty of Medicine, Osakasayama 589-8511, Japan;
| |
Collapse
|
9
|
Brambilla M, Cannillo B, D'Alessio A, Matheoud R, Agliata MF, Carriero A. Patients undergoing multiphase CT scans and receiving a cumulative effective dose of ≥ 100 mSv in a single episode of care. Eur Radiol 2021; 31:4452-4458. [PMID: 33449187 DOI: 10.1007/s00330-020-07665-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To estimate the number of patients who receive a cumulative effective dose (CED) of ≥ 100 mSv from computed tomography (CT) in a single day or episode of care. METHODS We examined 28,870 patients who underwent 49,834 CT examinations in a tertiary care centre in Italy in 2.5 years. Radiation exposures were retrieved from the hospital's automatic exposure monitoring system. Two cohorts were identified as those who received a CED of ≥ 100 mSv in a single day and within a month starting from the first examination. Organ doses were estimated for the first cohort. RESULTS Among the 1765 (6.1%) patients who received CED ≥ 100 mSv in the observation period, 427 received a CED of ≥ 100 mSv within a month (and 70 patients in a single day). This group represented 1.5% of all patients who underwent CT exams and 24% of those who received CED ≥ 100 mSv in the observation period. The clinical indication for referral included cancer in 132 patients (31%) and non-oncological indications in 295 patients (69%). In 68/70 patients with CED > 100 mSv in a single day, at least one organ/tissue received a dose of ≥ 100 mGy. CONCLUSIONS The finding of a sizeable percentage of patients undergoing CT exams and receiving CED ≥ 100 mSv in a single episode of care points toward the need of imaging appropriateness criteria, to revise the routine protocols, to replace older machines, and to provide to the radiologist the patient's prior radiation history to facilitate an appropriate decision-making process. KEY POINTS • Patients can receive effective doses greater than 100 mSv in a single CT or in multiple CT examinations performed in a single episode of care in 1.5% of patients in a 2.5-year period. • In this study, the clinical indication for CT referral was non-oncological in 69% of patients. • The patient's prior radiation history should be provided to the referring physicians and the radiological medical practitioner to facilitate an appropriate decision-making process.
Collapse
Affiliation(s)
- Marco Brambilla
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy.
| | - Barbara Cannillo
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Andrea D'Alessio
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Roberta Matheoud
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Maria F Agliata
- Radiology Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Alessandro Carriero
- Radiology Department, University Hospital "Maggiore della Carità", Novara, Italy
| |
Collapse
|
10
|
Lacroix M, Mulé S, Herin E, Pigneur F, Richard P, Zegai B, Baranes L, Djabbari M, Brunetti F, de'Angelis N, Laurent A, Tacher V, Kobeiter H, Luciani A. Virtual unenhanced imaging of the liver derived from 160-mm rapid-switching dual-energy CT (rsDECT): Comparison of the accuracy of attenuation values and solid liver lesion conspicuity with native unenhanced images. Eur J Radiol 2020; 133:109387. [PMID: 33166833 DOI: 10.1016/j.ejrad.2020.109387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/06/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the reliability of attenuation values of the liver parenchyma and focal liver lesions on virtual unenhanced images from arterial (VUEart) and portal venous phases (VUEport) compared to native unenhanced (NU) attenuation values in patients referred for assessment of malignant liver lesions. METHODS Seventy-three patients with confirmed primary or metastatic liver tumors who underwent a multiphase contrast-enhanced rapid-switching kVp dual-energy CT (rsDECT) were included in this IRB-approved retrospective study. Both qualitative and quantitative analyses - including the lesion-to-liver contrast-to-noise ratio (LL-CNR) - were performed and compared between NU and both VUEart and VUEport images. RESULTS The mean liver attenuation values were significantly lower in VUEart images (56.7 ± 6.7 HU) than in NU images (59.6 ± 7.5 HU, p = 0.008), and were comparable between VUEart and VUEport images (57.9 ± 6 UH, p = 0.38) and between VUEport and NU images (p = 0.051). The mean liver lesions attenuation values were comparable between NU, VUEart and VUEport images (p = 0.60). Strong and significant correlations values were found both in liver lesions and tumor-free parenchyma (r = 0.82-0.91, p < 0.01). The mean LL-CNR was significantly higher in VUEart and VUEport images than in NU images (1.7 ± 1 and 1.6 ± 1.1 vs 0.9 ± 0.6; p < 0.001), but was comparable between VUEart and VUEport images (p > 0.9). Lesion conspicuity was significantly higher in VUEport images than in NU images (p < 0.001). CONCLUSION VUEport images derived from 3rd generation rsDECT could confidently replace NU images in patients undergoing assessment for malignant liver lesions. These images provide comparable attenuation values in both liver lesions and liver parenchyma while reducing the radiation dose and scanning time.
Collapse
Affiliation(s)
- Maxime Lacroix
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France.
| | - Sébastien Mulé
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France; Faculté de Médecine de Créteil, Université Paris Est Créteil, 94000 Créteil, France; INSERM IMRB, U 955, Equipe 18, Créteil, France
| | - Edouard Herin
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France
| | - Frédéric Pigneur
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France
| | | | - Benhalima Zegai
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France
| | - Laurence Baranes
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France
| | - Marjan Djabbari
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France
| | - Francesco Brunetti
- Service de chirurgie digestive, AP-HP, Hôpital Henri Mondor, 94010 Créteil, France
| | - Nicola de'Angelis
- Faculté de Médecine de Créteil, Université Paris Est Créteil, 94000 Créteil, France; Service de chirurgie digestive, AP-HP, Hôpital Henri Mondor, 94010 Créteil, France
| | - Alexis Laurent
- Faculté de Médecine de Créteil, Université Paris Est Créteil, 94000 Créteil, France; Service de chirurgie digestive, AP-HP, Hôpital Henri Mondor, 94010 Créteil, France
| | - Vania Tacher
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France
| | - Hicham Kobeiter
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France; Faculté de Médecine de Créteil, Université Paris Est Créteil, 94000 Créteil, France
| | - Alain Luciani
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 94010 Créteil, France; Faculté de Médecine de Créteil, Université Paris Est Créteil, 94000 Créteil, France; INSERM IMRB, U 955, Equipe 18, Créteil, France
| |
Collapse
|
11
|
|
12
|
Assessing Liver Hemodynamics in Children With Cholestatic Cirrhosis by Use of Dual-Energy Spectral CT. AJR Am J Roentgenol 2020; 214:665-670. [PMID: 31967500 DOI: 10.2214/ajr.19.22035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this study was to evaluate the value of dual-energy CT (DECT) in assessing liver hemodynamics in children with cholestatic cirrhosis. MATERIALS AND METHODS. The cases of 60 children with cholestatic cirrhosis (study group) and 15 children with inherited metabolic diseases but normal liver function (control group) were retrospectively evaluated. Enhanced CT scans were obtained in spectral imaging mode. Iodine concentration (IC) of hepatic parenchyma in the arterial phase (ICA) and portal venous phase (ICP) was measured on iodine-water material decomposition images. The hepatic arterial iodine fraction (AIF) was calculated as: AIF = ICA / ICP. The ICA, ICP, and AIF of children in the control and study groups were analyzed by one-way ANOVA and post hoc test with Bonferroni correction. The radiation dose was recorded. RESULTS. There were differences in ICA and AIF between the control and study groups. The values in patients in the Child-Pugh class C group were the highest and those in the control group the lowest (p < 0.05). Statistically significant differences in ICP were not found (p > 0.05). Specifically, the multiple comparison results indicated that there were differences in both ICA and AIF in most of the groups (p < 0.05). The volume CT dose index value for all patients was the same at 10.14 mGy for each enhanced phase, and the total dose-length product varied between 402.68 and 679.18 mGy-cm. CONCLUSION. ICA and AIF obtained at dual-energy CT can be used as semiquantitative indicators to evaluate the liver hemodynamics of children with cholestatic cirrhosis.
Collapse
|
13
|
Große Hokamp N, Gilkeson R, Jordan M, Laukamp K, Neuhaus VF, Haneder S, Halliburton S, Gupta A. Virtual monoenergetic images from spectral detector CT as a surrogate for conventional CT images: Unaltered attenuation characteristics with reduced image noise. Eur J Radiol 2019; 117:49-55. [DOI: 10.1016/j.ejrad.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
|
14
|
Pourvaziri A, Parakh A, Mojtahed A, Kambadakone A, Sahani DV. Diagnostic performance of dual-energy CT and subtraction CT for renal lesion detection and characterization. Eur Radiol 2019; 29:6559-6570. [DOI: 10.1007/s00330-019-06224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 01/14/2023]
|
15
|
Lenga L, Trapp F, Albrecht MH, Wichmann JL, Johnson AA, Yel I, D'Angelo T, Booz C, Vogl TJ, Martin SS. Single- and dual-energy CT pulmonary angiography using second- and third-generation dual-source CT systems: comparison of radiation dose and image quality. Eur Radiol 2019; 29:4603-4612. [PMID: 30666446 DOI: 10.1007/s00330-018-5982-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate radiation exposure and image quality in matched patient cohorts for CT pulmonary angiography (CTPA) acquired in single- and dual-energy mode using second- and third-generation dual-source CT (DSCT) systems. METHODS We retrospectively included 200 patients (mean age, 65.5 years ± 15.7 years) with suspected pulmonary embolism-equally divided into four study groups (n = 50) and matched by gender and body mass index. CTPA was performed with vendor-predefined second-generation (group A, 100-kV single-energy computed tomography (SECT); group B, 80/Sn140-kV dual-energy computed tomography (DECT)) or third-generation DSCT (group C, 100-kV SECT; group D, 90/Sn150-kV DECT) devices. Radiation metrics were assessed using a normalized scan range of 27.5 cm. For objective image quality evaluation, dose-independent figure-of-merit (FOM) contrast-to-noise ratios (CNRs) were calculated. Subjective image analysis included ratings for overall image quality, reader confidence, and image artifacts using five-point Likert scales. RESULTS Calculations of the effective dose (ED) of radiation for a normalized scan range of 27.5 cm showed nonsignificant differences between SECT and DECT acquisitions for each scanner generation (p ≥ 0.253). The mean effective radiation dose was lower for third-generation groups C (1.5 mSv ± 0.8 mSv) and D (1.4 mSv ± 0.7 mSv) compared to second-generation groups A (2.5 mSv ± 0.9 mSv) and B (2.3 mSv ± 0.6 mSv) (both p ≤ 0.013). FOM-CNR measurements were highest for group D. Qualitative image parameters of overall image quality, reader confidence, and image artifacts showed nonsignificant differences among the four groups (p ≥ 0.162). CONCLUSIONS Third-generation DSCT systems show lower radiation dose parameters for CTPA compared to second-generation DSCT. DECT can be performed with both scanner generations without radiation dose penalty or detrimental effects on image quality compared to SECT. KEY POINTS • Radiation exposure showed nonsignificant differences between SECT and DECT for both DSCT scanner devices. • Dual-energy CTPA provides equivalent image quality compared to standard image acquisition. • Subjective image quality assessment was similar among the four study groups.
Collapse
Affiliation(s)
- Lukas Lenga
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Franziska Trapp
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Moritz H Albrecht
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julian L Wichmann
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Addison A Johnson
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tommaso D'Angelo
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Simon S Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Variation of degree of stenosis quantification using different energy level with dual energy CT scanner. Neuroradiology 2018; 61:285-291. [PMID: 30554271 DOI: 10.1007/s00234-018-2142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/20/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the variation in the quantification of the carotid degree of stenosis (DoS) with a dual energy computed tomography (CT), using different energy levels during the image reconstruction. METHODS In this retrospective study, 53 subjects (37 males; mean age 67 ± 11 years; age range 47-83 years) studied with a multi-energy CT scanner were included. Datasets were reconstructed on a dedicated workstation and from the CT raw data multiple datasets were generated at the following monochromatic energy levels: 66, 70, 77, and 86 kilo-electronvolt (keV). Two radiologists independently performed all measurements for quantification of the degree of stenosis. Wilcoxon test was used to test the differences between the Hounsifield unit (HU) values in the plaques at different keV. RESULTS The Wilcoxon analysis showed a statistically significant difference (p = 0.001) in the DoS assessment among the different keVs selected. The Bland-Altman analysis showed that the DoS difference had a linear relation with the keV difference (the bigger is the difference in keV, the bigger is the variation in DoS) and that for different keVs, the difference in DoS is reduced with its increase. CONCLUSION A standardization in the use of the energy level during the image reconstruction should be considered.
Collapse
|
17
|
Dual-Energy Imaging of the Pancreas. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Forte E, Monti S, Parente CA, Beyer L, De Rosa R, Infante T, Cavaliere C, Cademartiri F, Salvatore M, Stroszczynski C, Tedeschi C. Image Quality and Dose Reduction by Dual Source Computed Tomography Coronary Angiography: Protocol Comparison. Dose Response 2018; 16:1559325818805838. [PMID: 30349426 PMCID: PMC6194939 DOI: 10.1177/1559325818805838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023] Open
Abstract
Purpose: To compare image quality and radiation dose among different protocols in patients who underwent a 128-slice dual source computed tomography coronary angiography (DSCT-CTCA). Methods: Ninety patients were retrospectively grouped according to heart rate (HR): 26 patients (group A) with stable HR ≤60 bpm were acquired using high pitch spiral mode (FLASH); 48 patients (group B) with irregular HR ≤60 bpm or stable HR between 60 and 70 bpm using step and shoot mode; and 16 patients (group C) with irregular HR >60 bpm or stable HR ≥70 bpm by retrospective electrocardiogram pulsing acquisition. Signal to noise ratio (SNR) and contrast to noise ratio (CNR) were measured for the main vascular structures. Moreover, the dose-length product and the effective dose were assessed. Results: Both SNR and CNR were higher in group A compared to group C (18.27 ± 0.32 vs 11.22 ± 0.50 and 16.75 ± 0.32 vs 10.17 ± 0.50; P = .001). The effective dose was lower in groups A and B (2.09 ± 1.27 mSv and 4.60 ± 2.78 mSv, respectively) compared to group C (9.61 ± 5.95 mSv) P < .0001. Conclusion: The correct selection of a low-dose, HR-matched CTCA scan protocol with a DSCT scanner provides substantial reduction of radiation exposure and better SNR and CNR.
Collapse
Affiliation(s)
| | | | | | - Lukas Beyer
- Department of Radiology, Universitätsklinikum Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | - Carlo Tedeschi
- Department of Radiology, Universitätsklinikum Regensburg, Regensburg, Germany.,P.S.I. Napoli Est, ASL Napoli 1 Centro, Naples, Italy
| |
Collapse
|
19
|
|