1
|
Hughes H, Cornelis FH, Scaglione M, Patlas MN. Paranoid About Androids: A Review of Robotics in Radiology. Can Assoc Radiol J 2025; 76:232-238. [PMID: 39394918 DOI: 10.1177/08465371241290076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
In tandem with the ever-increasing global population, the demand for diagnostic radiology service provision is on the rise and at a disproportionate rate compared to the number of radiologists available to practice. The current "revolution in robotics" promises to alleviate personnel shortages in many sectors of industry, including medicine. Despite negative depictions of robots in popular culture, their multiple potential benefits cannot be overlooked, in particular when it comes to health service provision. The type of robots used for interventional procedures are largely robotic-assistance devices, such as the Da Vinci surgical robot. Advances have also been made with regards to robots for image-guided percutaneous needle placement, which have demonstrated superior accuracy compared to manual methods. It is likely that artificial intelligence will come to play a key role in the field of robotics and will result in an increase in the levels of robotic autonomy attainable. However, this concept is not without ethical and legal considerations, most notably who is responsible should an error occur; the physician, the robot manufacturer, software engineers, or the robot itself? Efforts have been made to legislate in order to protect against the potentially harmful effects of unexplainable "black-box" decision outputs of artificial intelligence systems. In order to be accepted by patients, studies have shown that the perceived level of trustworthiness and predictability of robots is crucial. Ultimately, effective, widespread implementation of medical robotic systems will be contingent on developers remaining cognizant of factors that increase human acceptance, as well as ensuring compliance with regulations.
Collapse
Affiliation(s)
- Hannah Hughes
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | | | - Mariano Scaglione
- Department of Surgical, Medical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Michael N Patlas
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Li Y, Lu Z, Tzemanaki A, Bahl A, Persad R, Melhuish C, Yang C. An ultrasound visual servoing dual-arm robotics system for needle placement in brachytherapy treatment. Front Robot AI 2025; 12:1558182. [PMID: 40224567 PMCID: PMC11986853 DOI: 10.3389/frobt.2025.1558182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
The accurate placement of radioactive seeds in prostate brachytherapy is critical to the efficacy of the procedure. Current manual needle insertion methods face challenges, including reduced accuracy due to hand tremors, high dependence on surgeon expertise, and strain during lengthy procedures. Additionally, manual approaches often struggle to adapt to tissue heterogeneities, leading to unsatisfied outcomes. Autonomous needle placement is difficult due to varying tissue parameters. This paper presents an innovative dual-arm visual-servo robotics system for needle steering precision during prostate brachytherapy. The system employs two Franka Emika arms: one for needle insertion and the other for positioning the ultrasound probe. Based on the real-time position feedback, a fuzzy logic controller guides needle steering, and a camera system offers supplementary tracking and safety monitoring. In order to identify the needle tip's position within tissue, a novel image recognition method which is intuitive to the surgeon is proposed with the use of the ultrasound probe. It is in conjunction with the scanning and control mode of the dual-arm robotic arm to locate the position of the needle tip inside the tissue. The camera system is also unified in the same dual-arm robotic arm coordinate system to monitor the entire needle steering process. By addressing the limitations of manual techniques, including accuracy, efficiency, and adaptability to tissue variations, the proposed system reduces the skill barrier, workload, and potential trauma associated with brachytherapy procedures. Experimental validation on a phantom shows a final needle placement accuracy of 0.285 cm, demonstrating the system's potential to improve treatment outcomes through precise needle control.
Collapse
Affiliation(s)
- Yanlei Li
- Bristol Robotics Laboratory, Bristol, United Kingdom
- Department of Engineering Design and Mathematics, Faculty of Environment and Technology, University of the West of England, Bristol, England, United Kingdom
| | - Zhenyu Lu
- Bristol Robotics Laboratory, Bristol, United Kingdom
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Antonia Tzemanaki
- Bristol Robotics Laboratory, Bristol, United Kingdom
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, England, United Kingdom
| | - Amit Bahl
- Bristol Robotics Laboratory, Bristol, United Kingdom
- Department of Engineering Design and Mathematics, Faculty of Environment and Technology, University of the West of England, Bristol, England, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, Bristol, England, United Kingdom
| | - Raj Persad
- Bristol Robotics Laboratory, Bristol, United Kingdom
- Department of Engineering Design and Mathematics, Faculty of Environment and Technology, University of the West of England, Bristol, England, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, Bristol, England, United Kingdom
| | - Chris Melhuish
- Bristol Robotics Laboratory, Bristol, United Kingdom
- Department of Engineering Design and Mathematics, Faculty of Environment and Technology, University of the West of England, Bristol, England, United Kingdom
| | - Chenguang Yang
- Bristol Robotics Laboratory, Bristol, United Kingdom
- School of Electrical Engineering, Electronics and Computer Science, Faculty of Science and Engineering, University of Liverpool, Liverpool, North West England, United Kingdom
| |
Collapse
|
3
|
Uribe Rivera AK, Giménez ME. Democratization in abdominal ablation therapies: The impact of percutaneous robotic assistance on accuracy-A systematic review. J Robot Surg 2025; 19:53. [PMID: 39821378 DOI: 10.1007/s11701-024-02158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/26/2024] [Indexed: 01/19/2025]
Abstract
Advances in medical technology have revolutionized minimally invasive procedures. This study aims to determine the status of intra-abdominal ablation therapies, focusing on outcomes regarding technique improvement and benefits related to the learning curve. A systematic search in four databases was performed in March 2024 to identify relevant studies. Endpoints included targeting accuracy, organ efficacy, safety, outcomes and technical advantages regardless of physician experience. A total of 40 studies were included. The robotic technique demonstrated significantly higher accuracy (median 1.75 mm) compared to the freehand technique (median 4.50 mm) (p < 0.05). RFA and MWA were the most frequently used ablation techniques, reaching a rate of 52.5% and liver was the main target organ in 77.5% of the studies. Subgroup analysis showed a median tumor size of 2.30 cm, 1.40 mm for the readjustments and 3.30 mm for accuracy in the freehand technique. For robotic approach, the median tumor size was 1.95 cm, readjustments were 0.55 mm, and accuracy was 1.85 mm, and no statistical difference was identified. Severe adverse events were lower with the robotic approach, and improvement in the learning curve was observed among novice physicians. Robotic-assisted ablation techniques improve accuracy and efficacy compared to freehand techniques and are easier for novices to use. This technology allows novices to achieve similar outcomes to experts, contributing to the democratization of ablation techniques. Nevertheless, more clinical trials and standardized studies are necessary to validate these findings and enable the integration of robotic systems into routine practice.
Collapse
Affiliation(s)
- Ana Karla Uribe Rivera
- IHU-Strasbourg, Institute of Image-Guided Surgery, 1, Place de l'Hôpital, 67000, Strasbourg, France.
| | - Mariano E Giménez
- IHU-Strasbourg, Institute of Image-Guided Surgery, 1, Place de l'Hôpital, 67000, Strasbourg, France
- IRCAD, Research Institute Against Digestive Cancer, Strasbourg, France
- DAICIM Foundation (Training, Research and Clinical Activity in Minimally Invasive Surgery), Buenos Aires, Argentina
| |
Collapse
|
4
|
Uribe Rivera AK, Seeliger B, Goffin L, García-Vázquez A, Mutter D, Giménez ME. Robotic Assistance in Percutaneous Liver Ablation Therapies: A Systematic Review and Meta-Analysis. ANNALS OF SURGERY OPEN 2024; 5:e406. [PMID: 38911657 PMCID: PMC11191991 DOI: 10.1097/as9.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 06/25/2024] Open
Abstract
Objective The aim of this systematic review and meta-analysis is to identify current robotic assistance systems for percutaneous liver ablations, compare approaches, and determine how to achieve standardization of procedural concepts for optimized ablation outcomes. Background Image-guided surgical approaches are increasingly common. Assistance by navigation and robotic systems allows to optimize procedural accuracy, with the aim to consistently obtain adequate ablation volumes. Methods Several databases (PubMed/MEDLINE, ProQuest, Science Direct, Research Rabbit, and IEEE Xplore) were systematically searched for robotic preclinical and clinical percutaneous liver ablation studies, and relevant original manuscripts were included according to the Preferred Reporting items for Systematic Reviews and Meta-Analyses guidelines. The endpoints were the type of device, insertion technique (freehand or robotic), planning, execution, and confirmation of the procedure. A meta-analysis was performed, including comparative studies of freehand and robotic techniques in terms of radiation dose, accuracy, and Euclidean error. Results The inclusion criteria were met by 33/755 studies. There were 24 robotic devices reported for percutaneous liver surgery. The most used were the MAXIO robot (8/33; 24.2%), Zerobot, and AcuBot (each 2/33, 6.1%). The most common tracking system was optical (25/33, 75.8%). In the meta-analysis, the robotic approach was superior to the freehand technique in terms of individual radiation (0.5582, 95% confidence interval [CI] = 0.0167-1.0996, dose-length product range 79-2216 mGy.cm), accuracy (0.6260, 95% CI = 0.1423-1.1097), and Euclidean error (0.8189, 95% CI = -0.1020 to 1.7399). Conclusions Robotic assistance in percutaneous ablation for liver tumors achieves superior results and reduces errors compared with manual applicator insertion. Standardization of concepts and reporting is necessary and suggested to facilitate the comparison of the different parameters used to measure liver ablation results. The increasing use of image-guided surgery has encouraged robotic assistance for percutaneous liver ablations. This systematic review analyzed 33 studies and identified 24 robotic devices, with optical tracking prevailing. The meta-analysis favored robotic assessment, showing increased accuracy and reduced errors compared with freehand technique, emphasizing the need for conceptual standardization.
Collapse
Affiliation(s)
- Ana K Uribe Rivera
- From the IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Barbara Seeliger
- From the IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Department of Visceral and Digestive Surgery, University Hospitals of Strasbourg, Strasbourg, France
- IRCAD, Research Institute Against Digestive Cancer, Strasbourg, France
- ICube, UMR 7357 CNRS, INSERM U1328 RODIN, University of Strasbourg, Strasbourg, France
- Inserm U1110, Institute for Viral and Liver Diseases, Strasbourg. France
- Trustworthy AI Lab, Centre National de la Recherche Scientifique (CNRS), France
| | - Laurent Goffin
- ICube, UMR 7357 CNRS, INSERM U1328 RODIN, University of Strasbourg, Strasbourg, France
- Trustworthy AI Lab, Centre National de la Recherche Scientifique (CNRS), France
- Computational Surgery SAS, Schiltigheim, France
| | | | - Didier Mutter
- From the IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Department of Visceral and Digestive Surgery, University Hospitals of Strasbourg, Strasbourg, France
- IRCAD, Research Institute Against Digestive Cancer, Strasbourg, France
| | - Mariano E Giménez
- From the IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- IRCAD, Research Institute Against Digestive Cancer, Strasbourg, France
- DAICIM Foundation (Training, Research and Clinical Activity in Minimally Invasive Surgery), Buenos Aires, Argentina
| |
Collapse
|
5
|
He X, Xiao Y, Zhang X, Zhang X, Zhang X, Wei Y, Zhang Z, Xue X, Zhang S. Low-dose CT fluoroscopy-guided interventional minimally invasive robot. Heliyon 2024; 10:e28914. [PMID: 38601523 PMCID: PMC11004810 DOI: 10.1016/j.heliyon.2024.e28914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Background This study aimed to assess the feasibility, safety, and accuracy of a low-dose CT fluoroscopy-guided remote-controlled robotic real-time puncture procedure. Methods The study involved two control groups with Taguchi method: Group A, which underwent low-dose traditional CT-guided manual puncture (blank control), and Group B, which underwent conditional control puncture. Additionally, an experimental group, Group C, underwent CT fluoroscopy-guided remote-controlled robotic real-time puncture. In a phantom experiment, various simulated targets were punctured, while in an animal experiment, attempts were made to puncture targets in different organs of four pigs. The number of needle adjustments, puncture time, total puncture operation time, and radiation dose were analyzed to evaluate the robot system. Results Successful punctures were achieved for each target, and no complications were observed. Dates were calculated for all parameters using Taguchi method. Conclusion The low-dose CT fluoroscopy-guided puncture robot system is a safe, feasible, and equally accurate alternative to traditional manual puncture procedures.
Collapse
Affiliation(s)
- Xiaofeng He
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Yueyong Xiao
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Xiao Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Xiaobo Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Xin Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Yingtian Wei
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Zhongliang Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Xiaodong Xue
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| | - Shiwen Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Diagnostic Radiology, Beijing, China
| |
Collapse
|
6
|
Chlorogiannis DD, Charalampopoulos G, Bale R, Odisio B, Wood BJ, Filippiadis DK. Innovations in Image-Guided Procedures: Unraveling Robot-Assisted Non-Hepatic Percutaneous Ablation. Semin Intervent Radiol 2024; 41:113-120. [PMID: 38993597 PMCID: PMC11236453 DOI: 10.1055/s-0044-1786724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Interventional oncology is routinely tasked with the feat of tumor characterization or destruction, via image-guided biopsy and tumor ablation, which may pose difficulties due to challenging-to-reach structures, target complexity, and proximity to critical structures. Such procedures carry a risk-to-benefit ratio along with measurable radiation exposure. To streamline the complexity and inherent variability of these interventions, various systems, including table-, floor-, gantry-, and patient-mounted (semi-) automatic robotic aiming devices, have been developed to decrease human error and interoperator and intraoperator outcome variability. Their implementation in clinical practice holds promise for enhancing lesion targeting, increasing accuracy and technical success rates, reducing procedure duration and radiation exposure, enhancing standardization of the field, and ultimately improving patient outcomes. This narrative review collates evidence regarding robotic tools and their implementation in interventional oncology, focusing on clinical efficacy and safety for nonhepatic malignancies.
Collapse
Affiliation(s)
| | - Georgios Charalampopoulos
- 2nd Department of Radiology, University General Hospital “ATTIKON,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Reto Bale
- Department of Radiology, Interventional Oncology - Stereotaxy and Robotics, Medical University Innsbruck, Innsbruck, Austria
| | - Bruno Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradford J. Wood
- Interventional Radiology and Center for Interventional Oncology, NIH Clinical Center and National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dimitrios K. Filippiadis
- 2nd Department of Radiology, University General Hospital “ATTIKON,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Matsui Y, Kamegawa T, Tomita K, Uka M, Umakoshi N, Kawabata T, Munetomo K, Iguchi T, Matsuno T, Hiraki T. Robotic systems in interventional oncology: a narrative review of the current status. Int J Clin Oncol 2024; 29:81-88. [PMID: 37115426 DOI: 10.1007/s10147-023-02344-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Interventional oncology offers minimally invasive treatments for malignant tumors for curative and palliative purposes based on the percutaneous insertion of needles or catheters into the target location under image guidance. Robotic systems have been gaining increasing attention as tools that provide potential advantages for image-guided interventions. Among the robotic systems developed for intervention, those relevant to the oncology field are mainly those for guiding or driving the needles in non-vascular interventional procedures such as biopsy and tumor ablation. Needle-guiding robots support planning the needle path and align the needle robotically according to the planned trajectory, which is combined with subsequent manual needle insertion by the physician through the needle guide. Needle-driving robots can advance the needle robotically after determining its orientation. Although a wide variety of robotic systems have been developed, only a limited number of these systems have reached the clinical phase or commercialization thus far. The results of previous studies suggest that such interventional robots have the potential to increase the accuracy of needle placement, facilitate out-of-plane needle insertion, decrease the learning curve, and reduce radiation exposure. On the other hand, increased complexity and costs may be a concern when using robotic systems compared with conventional manual procedures. Further data should be collected to comprehensively assess the value of robotic systems in interventional oncology.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Tetsushi Kamegawa
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Koji Tomita
- Department of Radiology, Okayama University Hospital, Okayama, Japan
| | - Mayu Uka
- Department of Radiology, Okayama University Hospital, Okayama, Japan
| | - Noriyuki Umakoshi
- Department of Radiology, Okayama University Hospital, Okayama, Japan
| | - Takahiro Kawabata
- Department of Radiology, Okayama University Hospital, Okayama, Japan
| | - Kazuaki Munetomo
- Department of Radiology, Okayama University Hospital, Okayama, Japan
| | - Toshihiro Iguchi
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Okayama, Japan
| | - Takayuki Matsuno
- Faculty of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takao Hiraki
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
8
|
Swikehardt M, Newsome J, Macey M, Park P, Vilvendhan R, Kamil A, Bercu Z, Flacke S. Percutaneous Robotics in Interventional Radiology. Tech Vasc Interv Radiol 2023; 26:100917. [PMID: 38071024 DOI: 10.1016/j.tvir.2023.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The accuracy of the robotic device not only relies on a reproducible needle advancement, but also on the possibility to correct target movement at chosen checkpoints and to deviate from a linear to a nonlinear trajectory. We report our experience in using the robotic device for the insertion of trocar needles in CT guided procedures. The majority of procedures were targeted organ biopsies in the chest abdomen or pelvis. The accuracy of needle placement after target adjustments did not significantly differ from those patients where a linear trajectory could be used. The steering capabilities of the robot allow correction of target movement of the fly.
Collapse
Affiliation(s)
- Michael Swikehardt
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University Medical School, Burlington, MA
| | - Janice Newsome
- Division or Interventional Radiology and Image guided Medicine, Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Matthew Macey
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University Medical School, Burlington, MA
| | - Peter Park
- Division or Interventional Radiology and Image guided Medicine, Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Rajendran Vilvendhan
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University Medical School, Burlington, MA
| | - Arif Kamil
- Division or Interventional Radiology and Image guided Medicine, Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Zachary Bercu
- Division or Interventional Radiology and Image guided Medicine, Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Sebastian Flacke
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University Medical School, Burlington, MA.
| |
Collapse
|
9
|
Najafi G, Kreiser K, Abdelaziz MEMK, Hamady MS. Current State of Robotics in Interventional Radiology. Cardiovasc Intervent Radiol 2023; 46:549-561. [PMID: 37002481 PMCID: PMC10156773 DOI: 10.1007/s00270-023-03421-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/11/2023] [Indexed: 05/04/2023]
Abstract
As a relatively new specialty with a minimally invasive nature, the field of interventional radiology is rapidly growing. Although the application of robotic systems in this field shows great promise, such as with increased precision, accuracy, and safety, as well as reduced radiation dose and potential for teleoperated procedures, the progression of these technologies has been slow. This is partly due to the complex equipment with complicated setup procedures, the disruption to theatre flow, the high costs, as well as some device limitations, such as lack of haptic feedback. To further assess these robotic technologies, more evidence of their performance and cost-effectiveness is needed before their widespread adoption within the field. In this review, we summarise the current progress of robotic systems that have been investigated for use in vascular and non-vascular interventions.
Collapse
Affiliation(s)
- Ghazal Najafi
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | - Kornelia Kreiser
- Department of Neuroradiology, Rehabilitations - und Universitätskliniken Ulm, 89081, Ulm, Germany
| | - Mohamed E M K Abdelaziz
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mohamad S Hamady
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
10
|
Cheng K, Li L, Du Y, Wang J, Chen Z, Liu J, Zhang X, Dong L, Shen Y, Yang Z. A systematic review of image-guided, surgical robot-assisted percutaneous puncture: Challenges and benefits. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8375-8399. [PMID: 37161203 DOI: 10.3934/mbe.2023367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Percutaneous puncture is a common medical procedure that involves accessing an internal organ or tissue through the skin. Image guidance and surgical robots have been increasingly used to assist with percutaneous procedures, but the challenges and benefits of these technologies have not been thoroughly explored. The aims of this systematic review are to furnish an overview of the challenges and benefits of image-guided, surgical robot-assisted percutaneous puncture and to provide evidence on this approach. We searched several electronic databases for studies on image-guided, surgical robot-assisted percutaneous punctures published between January 2018 and December 2022. The final analysis refers to 53 studies in total. The results of this review suggest that image guidance and surgical robots can improve the accuracy and precision of percutaneous procedures, decrease radiation exposure to patients and medical personnel and lower the risk of complications. However, there are many challenges related to the use of these technologies, such as the integration of the robot and operating room, immature robotic perception, and deviation of needle insertion. In conclusion, image-guided, surgical robot-assisted percutaneous puncture offers many potential benefits, but further research is needed to fully understand the challenges and optimize the utilization of these technologies in clinical practice.
Collapse
Affiliation(s)
- Kai Cheng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Lixia Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Yanmin Du
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Jiangtao Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Zhenghua Chen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Jian Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Xiangsheng Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Lin Dong
- Center on Frontiers of Computing Studies, Peking University, Beijing 100089, China
| | - Yuanyuan Shen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| | - Zhenlin Yang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China
| |
Collapse
|
11
|
Sajadi SM, Karbasi SM, Brun H, Tørresen J, Elle OJ, Mathiassen K. Towards Autonomous Robotic Biopsy—Design, Modeling and Control of a Robot for Needle Insertion of a Commercial Full Core Biopsy Instrument. Front Robot AI 2022; 9:896267. [PMID: 35832930 PMCID: PMC9272465 DOI: 10.3389/frobt.2022.896267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
This paper presents the design, control, and experimental evaluation of a novel fully automated robotic-assisted system for the positioning and insertion of a commercial full core biopsy instrument under guidance by ultrasound imaging. The robotic system consisted of a novel 4 Degree of freedom (DOF) add-on robot for the positioning and insertion of the biopsy instrument that is attached to a UR5-based teleoperation system with 6 DOF. The robotic system incorporates the advantages of both freehand and probe-guided biopsy techniques. The proposed robotic system can be used as a slave robot in a teleoperation configuration or as an autonomous or semi-autonomous robot in the future. While the UR5 manipulator was controlled using a teleoperation scheme with force controller, a reinforcement learning based controller using the Deep Deterministic Policy Gradient (DDPG) algorithm was developed for the add-on robotic system. The dexterous workspace analysis of the add-on robotic system demonstrated that the system has a suitable workspace within the US image. Two sets of comprehensive experiments including four experiments were performed to evaluate the robotic system’s performance in terms of the biopsy instrument positioning, and the insertion of the needle inside the ultrasound plane. The experimental results showed the ability of the robotic system for in-plane needle insertion. The overall mean error of all four experiments in the tracking of the needle angle was 0.446°, and the resolution of the needle insertion was 0.002 mm.
Collapse
Affiliation(s)
- Seyed MohammadReza Sajadi
- The Research Group of Robotics and Intelligent Systems (ROBIN), Department of Informatics, University of Oslo, Oslo, Norway
- Digital Signal Processing Group, Department of Informatics, University of Oslo, Oslo, Norway
- *Correspondence: Seyed MohammadReza Sajadi,
| | - Seyed Mojtaba Karbasi
- The Research Group of Robotics and Intelligent Systems (ROBIN), Department of Informatics, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Henrik Brun
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- The Department for Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Jim Tørresen
- The Research Group of Robotics and Intelligent Systems (ROBIN), Department of Informatics, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Ole Jacob Elle
- The Research Group of Robotics and Intelligent Systems (ROBIN), Department of Informatics, University of Oslo, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Kim Mathiassen
- Department of Technology Systems, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
de Baere T, Roux C, Noel G, Delpla A, Deschamps F, Varin E, Tselikas L. Robotic assistance for percutaneous needle insertion in the kidney: preclinical proof on a swine animal model. Eur Radiol Exp 2022; 6:13. [PMID: 35257224 PMCID: PMC8901810 DOI: 10.1186/s41747-022-00265-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
We evaluated the accuracy, safety, and feasibility of a computed tomography (CT)-guided robotic assistance system for percutaneous needle placement in the kidney.
Methods
Fiducials surgically implanted into the kidneys of two pigs were used as targets for subsequent robotically-assisted needle insertion. Robotically-assisted needle insertions and CT acquisitions were coordinated using respiratory monitoring. An initial scan volume data set was used for needle insertion planning defining skin entry and target point. Then, needle insertion was performed according to robot positioning. The accuracy of needle placement was evaluated upon the distance between the needle tip and the predefined target on a post needle insertion scan. A delayed contrast-enhanced CT scan was acquired to assess safety.
Results
Eight needle trajectories were performed with a median procedural time measured from turning on the robotic system to post needle insertion CT scan of 21 min (interquartile range 15.5−26.5 min). Blind review of needle placement accuracy was 2.3 ± 1.2 mm (mean ± standard deviation) in lateral deviation, 0.7 ± 1.7 mm in depth deviation, and 2.8 ± 1.3 mm in three-dimensional Euclidian deviation. All needles were inserted on the first attempt, which determined 100% feasibility, without needle readjustment. The angulation and length of the trajectory did not impact on the needle placement accuracy. Two minor procedure-related complications were encountered: 2 subcapsular haematomas (13 × 6 mm and 35 × 6 mm) in the same animal.
Conclusions
Robotically-assisted needle insertion was shown feasible, safe and accurate in a swine kidney model. Further larger studies are needed.
Collapse
|
13
|
Levy S, Goldberg SN, Roth I, Shochat M, Sosna J, Leichter I, Flacke S. Clinical evaluation of a robotic system for precise CT-guided percutaneous procedures. Abdom Radiol (NY) 2021; 46:5007-5016. [PMID: 34146132 DOI: 10.1007/s00261-021-03175-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE To assess accuracy and compare protocols for CT-guided needle insertion for clinical biopsies using a hands-free robotic system, balancing system accuracy with duration of procedure and radiation dose. METHODS Thirty-two percutaneous abdominal and pelvic biopsies were performed and analyzed at two centers (Center 1 n = 11; Center 2 n = 21) as part of an ongoing prospective, multi-center study. CT datasets were obtained for planning and controlled placement of 17 g needles using a patient-mounted, CT-guided robotic system. Planning included target selection, skin entry point, and predetermined checkpoints. Additional CT imaging was performed at checkpoints to confirm needle location and permit stepwise correction of the trajectory. Center 1 used a more conservative approach with multiple checkpoints, whereas Center 2 used fewer checkpoints. Scanning and needle advancement were performed under respiratory gating. Accuracy, radiation dose, and steering duration were compared. RESULTS Overall accuracy was 1.6 ± 1.5 mm (1.9 ± 1.2 mm Center 1; 1.5 ± 1.6 mm Center 2; p = 0.55). Mean distance to target was 86.2 ± 27.1 mm (p = 0.18 between centers). Center 1 used 4.6 ± 0.8 checkpoints, whereas Center 2 used 1.8 ± 0.6 checkpoints (p < 0.001). Effective radiation doses were lower for Center 1 than for Center 2 (22.2 ± 12.6 mSv vs. 11.7 ± 4.3 mSv; p = 0.002). Likewise, steering duration (from planning to target) was significantly reduced in relation to the number of checkpoints from 43.8 ± 15.9 min for Center 1 to 30.5 ± 10.2 min for Center 2 (p = 0.008). CONCLUSIONS Accurate needle targeting with < 2 mm error can be achieved in patients when using a CT-guided robotic system. Judicious selection of the number of checkpoints may substantially reduce procedure time and radiation dose without sacrificing accuracy.
Collapse
|
14
|
van Amerongen MJ, Mariappan P, Voglreiter P, Flanagan R, Jenniskens SFM, Pollari M, Kolesnik M, Moche M, Fütterer JJ. Software-based planning of ultrasound and CT-guided percutaneous radiofrequency ablation in hepatic tumors. Int J Comput Assist Radiol Surg 2021; 16:1051-1057. [PMID: 33974224 PMCID: PMC8166805 DOI: 10.1007/s11548-021-02394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
Objectives Radiofrequency ablation (RFA) can be associated with local recurrences in the treatment of liver tumors. Data obtained at our center for an earlier multinational multicenter trial regarding an in-house developed simulation software were re-evaluated in order to analyze whether the software was able to predict local recurrences. Methods Twenty-seven RFA ablations for either primary or secondary hepatic tumors were included. Colorectal liver metastases were shown in 14 patients and hepatocellular carcinoma in 13 patients. Overlap of the simulated volume and the tumor volume was automatically generated and defined as positive predictive value (PPV) and additionally visually assessed. Local recurrence during follow-up was defined as gold standard. Sensitivity and specificity were calculated using the visual assessment and gold standard. Results Mean tumor size was 18 mm (95% CI 15–21 mm). Local recurrence occurred in 5 patients. The PPV of the simulation showed a mean of 0.89 (0.84–0.93 95% CI). After visual assessment, 9 incomplete ablations were observed, of which 4 true positives and 5 false positives for the detection of an incomplete ablation. The sensitivity and specificity were, respectively, 80% and 77% with a correct prediction in 78% of cases. No significant correlation was found between size of the tumor and PPV (Pearson Correlation 0.10; p = 0.62) or between PPV and recurrence rates (Pearson Correlation 0.28; p = 0.16). Conclusions The simulation software shows promise in estimating the completeness of liver RFA treatment and predicting local recurrence rates, but could not be performed real-time. Future improvements in the field of registration could improve results and provide a possibility for real-time implementation.
Collapse
Affiliation(s)
- M J van Amerongen
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands.
| | - P Mariappan
- NUMA Engineering Services Ltd., Louth, Ireland.,Department of Mathematics and Statistics, IIT Tirupati, Tirupati, India
| | - P Voglreiter
- Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| | - R Flanagan
- NUMA Engineering Services Ltd., Louth, Ireland
| | - S F M Jenniskens
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - M Pollari
- Department of Computer Science, Aalto University School of Science and Technology, Espoo, Finland
| | - M Kolesnik
- Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Germany
| | - M Moche
- Department of Interventional Radiology, Helios Park-Klinikum Leipzig, Leipzig, Germany
| | - J J Fütterer
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands.,Robotics and Mechatronics (RaM), University of Twente, Enschede, The Netherlands
| |
Collapse
|
15
|
Xu T, Xia Y. Guidance for Acupuncture Robot with Potentially Utilizing Medical Robotic Technologies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1-11. [DOI: doi:10.1155/2021/8883598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Acupuncture is gaining increasing attention and recognition all over the world. However, a lot of physical labor is paid by acupuncturists. It is natural to resort to a robot which can improve the accuracy as well as the efficacy of therapy. Several teams have separately developed real acupuncture robots or related technologies and even went to the stage of clinical trial and then achieved success commercially. A completed clinical practical acupuncture robot is not far from reach with the combination of existing mature medical robotic technologies. A hand-eye-brain coordination framework is proposed in this review to integrate the potential utilizing technologies including force feedback, binocular vision, and automatic prescription. We should take acupuncture prescription with artificial intelligence and future development trends into account and make a feasible choice in development of modern acupuncture.
Collapse
Affiliation(s)
- Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youbing Xia
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Guidance for Acupuncture Robot with Potentially Utilizing Medical Robotic Technologies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8883598. [PMID: 33859714 PMCID: PMC8026281 DOI: 10.1155/2021/8883598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022]
Abstract
Acupuncture is gaining increasing attention and recognition all over the world. However, a lot of physical labor is paid by acupuncturists. It is natural to resort to a robot which can improve the accuracy as well as the efficacy of therapy. Several teams have separately developed real acupuncture robots or related technologies and even went to the stage of clinical trial and then achieved success commercially. A completed clinical practical acupuncture robot is not far from reach with the combination of existing mature medical robotic technologies. A hand-eye-brain coordination framework is proposed in this review to integrate the potential utilizing technologies including force feedback, binocular vision, and automatic prescription. We should take acupuncture prescription with artificial intelligence and future development trends into account and make a feasible choice in development of modern acupuncture.
Collapse
|
17
|
Feasibility, safety and accuracy of a CT-guided robotic assistance for percutaneous needle placement in a swine liver model. Sci Rep 2021; 11:5218. [PMID: 33664412 PMCID: PMC7933138 DOI: 10.1038/s41598-021-84878-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
Evaluate the feasibility, safety and accuracy of a CT-guided robotic assistance for percutaneous needle placement in the liver. Sixty-six fiducials were surgically inserted into the liver of ten swine and used as targets for needle insertions. All CT-scan acquisitions and robotically-assisted needle insertions were coordinated with breath motion using respiratory monitoring. Skin entry and target points were defined on planning CT-scan. Then, robotically-assisted insertions of 17G needles were performed either by experienced interventional radiologists or by a novice. Post-needle insertion CT-scans were acquired to assess accuracy (3D deviation, ie. distance from needle tip to predefined target) and safety. All needle insertions (43/43; median trajectory length = 83 mm (interquartile range [IQR] 72–105 mm) could be performed in one (n = 36) or two (n = 7) attempts (100% feasibility). Blinded evaluation showed an accuracy of 3.5 ± 1.3 mm. Accuracy did not differ between novice and experienced operators (3.7 ± 1.3 versus 3.4 ± 1.2 mm, P = 0.44). Neither trajectory angulation nor trajectory length significantly impacted accuracy. No complications were encountered. Needle insertion using the robotic device was shown feasible, safe and accurate in a swine liver model. Accuracy was influenced neither by the trajectory length nor by trajectory angulations nor by operator’s experience. A prospective human clinical trial is recruiting.
Collapse
|
18
|
Wang Y, Fu Z, Zhao ZF, Shen Y, Zhang TF, Shi WY, Fei J, Chen GB. Experimental study of the optimum puncture pattern of robot-assisted needle insertion into hyperelastic materials. Proc Inst Mech Eng H 2020; 235:28-43. [PMID: 32873144 DOI: 10.1177/0954411920950904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The robot-assisted insertion surgery plays a crucial role in biopsy and therapy. This study focuses on determining the optimum puncture pattern for robot-assisted insertion, aiming at the matching problem of needle insertion parameters, thereby to reduce the pain for patients and to improve the reachability to the lesion point. First, a 6-degrees of freedom (DOFs) Computed Tomography (CT)-guided surgical robotic system for minimally invasive percutaneous lung is developed and used to perform puncture experiments. The effects of four main insertion factors on the robotic puncture are verified by designing the orthogonal test, where the inserting object is the artificial skin-like specimen with high transparent property and a digital image processing method is used to analyze the needle tip deflection. Next, the various phases of puncture process are divided and analyzed in detail in view of the tissue deformation and puncture force. Then, short discussion on the comparison of puncture force with different effect factors for the same beveled needle is presented. The same pattern can be observed for all of the cases. Finally, based on the experimental data, the formulations of the puncture force and needle deflection which depends on Gauge size, insertion velocity, insertion angle, and insertion depth are developed using the multiple regression method, which can be used to get an optimum puncture pattern under the constrains of minimum peak force and minimum needle tip deflection. The developed models have the effectiveness and applicability on determining the optimum puncture pattern for one puncture event, and which can also provide insights useful for the setting of insertion parameters in clinical practice.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuang Fu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yun Shen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Tie-Feng Zhang
- Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Yi Shi
- Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Fei
- Baoshan District Dachang Hospital, Shanghai, China
| | - Guang-Biao Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Yokouchi K, Kamegawa T, Matsuno T, Hiraki T, Yamaguchi T, Gofuku A. Development of a Gripper with Variable Stiffness for a CT-Guided Needle Insertion Robot. JOURNAL OF ROBOTICS AND MECHATRONICS 2020. [DOI: 10.20965/jrm.2020.p0692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, interventional radiology (IR) as a medical procedure has attracted considerable attention. Among the various IR techniques, computed tomography (CT)-guided IR is performed by inserting a specific needle into a lesion under CT guidance, leading to this medical procedure being less invasive. However, as the procedure requires the doctor to be positioned near the CT, radiation exposure may be a major concern. To overcome this problem, we developed a remote-controlled robotic system for needle insertion during CT-guided interventional procedures. The current needle holder for the robot is risky in that it might hurt a patient since a needle is always held firmly even when the patient moves. To solve this problem, we designed and fabricated a gripper with variable stiffness through jamming transition. Subsequently, we conducted experiments to investigate the effect of elements constituting the gripper to improve its performance.
Collapse
|
20
|
He ZH, Wu QL, Ye H, Wang KY, Li LQ, Peng NF. Microwave ablation of liver cancer: An updated review. Shijie Huaren Xiaohua Zazhi 2020; 28:371-377. [DOI: 10.11569/wcjd.v28.i10.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The treatment methods for early liver cancer include surgical resection, liver transplantation, and local ablation. Among them, microwave ablation (MWA) is widely used in clinical practice because of its outstanding advantages, such as minimal invasiveness, radical curative effect, short treatment time, few complications, and no heat-sink effect, especially for the treatment of tumors adjacent to major vessels and hepatic metastases. However, MWA also has limitations such as unpredictable size and shape of the ablation area. This review systematically illustrates the effectiveness and safety of MWA in the treatment of liver cancer. Meanwhile, the relative superiority of the new generation of MWA is discussed, with an aim to provide reference for MWA of liver cancer.
Collapse
Affiliation(s)
- Ze-Hua He
- Department of General Surgery, Langdong Hospital of Guangxi Medical University, Nanning 530022, Guangxi Zhuang Autonomous Region, China
| | - Qiu-Lin Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hang Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Kai-Yuan Wang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ning-Fu Peng
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
21
|
Improvement of the primary efficacy of microwave ablation of malignant liver tumors by using a robotic navigation system. Radiol Oncol 2020; 54:295-300. [PMID: 32463387 PMCID: PMC7409605 DOI: 10.2478/raon-2020-0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background The aim of the study was to assess the primary efficacy of robot-assisted microwave ablation and compare it to manually guided microwave ablation for percutaneous ablation of liver malignancies. Patients and methods We performed a retrospective single center evaluation of microwave ablations of 368 liver tumors in 192 patients (36 female, 156 male, mean age 63 years). One hundred and nineteen ablations were performed between 08/2011 and 03/2014 with manual guidance, whereas 249 ablations were performed between 04/2014 and 11/2018 using robotic guidance. A 6-week follow-up (ultrasound, computed tomography and magnetic resonance imaging) was performed on all patients. Results The primary technique efficacy outcome of the group treated by robotic guidance was significantly higher than that of the manually guided group (88% vs. 76%; p = 0.013). Multiple logistic regression analysis indicated that a small tumor size (≤ 3 cm) and robotic guidance were significant favorable prognostic factors for complete ablation. Conclusions In addition to a small tumor size, robotic navigation was a major positive prognostic factor for primary technique efficacy.
Collapse
|
22
|
Imajo K, Ogawa Y, Yoneda M, Saito S, Nakajima A. A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma. J Med Ultrason (2001) 2020; 47:265-277. [PMID: 31960190 DOI: 10.1007/s10396-019-00997-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
Abstract
Although microwave ablation (MWA) exhibits a high thermal efficiency, the major limitation of conventional MWA systems is the lack of predictability of the ablation zone size and shape. Therefore, a specific newer generation MWA system, The Emprint™ Ablation System with Thermosphere™ Technology, was designed to create predictable large spherical zones of ablation that are not impacted by varying tissue environments. The time required for ablation with MWA systems is short, and the shape of the necrosis is elliptical with the older systems and spherical with the new system. In addition, because MWA has no heat-sink effect, it can be used to ablate tumors adjacent to major vessels. Although these factors yield a large ablation volume and result in good local control, excessive ablation of liver tissue and unexpected ablation of surrounding organs are possible. Therefore, MWA should be carefully performed. This review highlights the efficacy and complications of MWA performed with conventional systems and the newer generation system in patients with hepatocellular carcinoma (HCC). MWA with the newer generation system seems to be a promising treatment option for large HCCs and secondary hepatic malignancies, with several advantages over other available ablation techniques, including conventional MWA. However, further randomized controlled trials are necessary to fully clarify the benefits and pitfalls of this new system.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
23
|
Smartphone Augmented Reality CT-Based Platform for Needle Insertion Guidance: A Phantom Study. Cardiovasc Intervent Radiol 2020; 43:756-764. [DOI: 10.1007/s00270-019-02403-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023]
|
24
|
Robotic CT-guided out-of-plane needle insertion: comparison of angle accuracy with manual insertion in phantom and measurement of distance accuracy in animals. Eur Radiol 2019; 30:1342-1349. [PMID: 31773299 PMCID: PMC7033049 DOI: 10.1007/s00330-019-06477-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 01/21/2023]
Abstract
Objectives To evaluate the accuracy of robotic CT-guided out-of-plane needle insertion in phantom and animal experiments. Methods A robotic system (Zerobot), developed at our institution, was used for needle insertion. In the phantom experiment, 12 robotic needle insertions into a phantom at various angles in the XY and YZ planes were performed, and the same insertions were manually performed freehand, as well as guided by a smartphone application (SmartPuncture). Angle errors were compared between the robotic and smartphone-guided manual insertions using Student’s t test. In the animal experiment, 6 robotic out-of-plane needle insertions toward targets of 1.0 mm in diameter placed in the kidneys and hip muscles of swine were performed, each with and without adjustment of needle orientation based on reconstructed CT images during insertion. Distance accuracy was calculated as the distance between the needle tip and the target center. Results In the phantom experiment, the mean angle errors of the robotic, freehand manual, and smartphone-guided manual insertions were 0.4°, 7.0°, and 3.7° in the XY plane and 0.6°, 6.3°, and 0.6° in the YZ plane, respectively. Robotic insertions in the XY plane were significantly (p < 0.001) more accurate than smartphone-guided insertions. In the animal experiment, the overall mean distance accuracy of robotic insertions with and without adjustment of needle orientation was 2.5 mm and 5.0 mm, respectively. Conclusion Robotic CT-guided out-of-plane needle insertions were more accurate than smartphone-guided manual insertions in the phantom and were also accurate in the in vivo procedure, particularly with adjustment during insertion. Key Points • Out-of-plane needle insertions performed using our robot were more accurate than smartphone-guided manual insertions in the phantom experiment and were also accurate in the in vivo procedure. • In the phantom experiment, the mean angle errors of the robotic and smartphone-guided manual out-of-plane needle insertions were 0.4° and 3.7° in the XY plane (p < 0.001) and 0.6° and 0.6° in the YZ plane (p = 0.65), respectively. • In the animal experiment, the overall mean distance accuracies of the robotic out-of-plane needle insertions with and without adjustments of needle orientation during insertion were 2.5 mm and 5.0 mm, respectively. Electronic supplementary material The online version of this article (10.1007/s00330-019-06477-1) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Hiraki T, Kamegawa T, Matsuno T, Sakurai J, Komaki T, Yamaguchi T, Tomita K, Uka M, Matsui Y, Iguchi T, Gobara H, Kanazawa S. Robotic needle insertion during computed tomography fluoroscopy-guided biopsy: prospective first-in-human feasibility trial. Eur Radiol 2019; 30:927-933. [PMID: 31444597 DOI: 10.1007/s00330-019-06409-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION This was a prospective, first-in-human trial to evaluate the feasibility and safety of insertion of biopsy introducer needles with our robot during CT fluoroscopy-guided biopsy in humans. MATERIALS AND METHODS Eligible patients were adults with a lesion ≥ 10 mm in an extremity or the trunk requiring pathological diagnosis with CT fluoroscopy-guided biopsy. Patients in whom at-risk structures were located within 10 mm of the scheduled needle tract were excluded. Ten patients (4 females and 6 males; mean [range] age, 72 [52-87] years) with lesions (mean [range] maximum diameter, 28 [14-52] mm) in the kidney (n = 4), lung (n = 3), mediastinum (n = 1), adrenal gland (n = 1), and muscle (n = 1) were enrolled. The biopsy procedure involved robotic insertion of a biopsy introducer needle followed by manual acquisition of specimens using a biopsy needle. The patients were followed up for 14 days. Feasibility was defined as the distance of ≤ 10 mm between needle tip after insertion and the nearest lesion edge on the CT fluoroscopic images. The safety of robotic insertion was evaluated on the basis of machine-related troubles and adverse events according to the Clavien-Dindo classification. RESULTS Robotic insertion of the introducer needle was feasible in all patients, enabling pathological diagnosis. There was no machine-related trouble. A total of 11 adverse events occurred in 8 patients, including 10 grade I events and 1 grade IIIa event. CONCLUSION Insertion of biopsy introducer needles with our robot was feasible at several locations in the human body. KEY POINTS • Insertion of biopsy introducer needles with our robot during CT fluoroscopy-guided biopsy was feasible at several locations in the human body.
Collapse
Affiliation(s)
- Takao Hiraki
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| | - Tetsushi Kamegawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Takayuki Matsuno
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Jun Sakurai
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshiyuki Komaki
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Takuya Yamaguchi
- Division of Radiology, Medical Technology Department, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Koji Tomita
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Mayu Uka
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yusuke Matsui
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshihiro Iguchi
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Hideo Gobara
- Division of Medical Informatics, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Susumu Kanazawa
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|