1
|
Pujari L, Suresh A, Chowdhury Z, Pradhan S, Tripathi M, Gupta A, Singh P, Giridhar P, Kapoor AR, Shinghal A, Sansar B, Mv M. Outcomes of De Novo Oligometastatic Breast Cancer Treated With Surgery of Primary and Metastasis Directed Radiotherapy. Am J Clin Oncol 2024:00000421-990000000-00212. [PMID: 38963014 DOI: 10.1097/coc.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
OBJECTIVES With sensitive imaging for breast cancer, the question arises whether present-day oncologists treat dOMBC with palliative systemic therapy (ST), which, a few years earlier, would have been treated with curative intent. We retrospectively analyzed outcomes of dOMBC treated with curative intent using a combination of surgery, metastasis-directed radiotherapy (RT), and adjuvant/neoadjuvant ST and have also explored the possible role of total lesional glycolysis of metastases and p53 immunohistochemistry in predicting outcomes. METHODS Data were collected from a prospectively maintained database using electronic medical records and Radiation Oncology Information System. In the study, dOMBC was defined as up to 3 metastatic sites, all amenable to treatment with ablative RT and primary and axillary disease amenable to curative surgery. Patients were treated with surgery, ST, and RT. RESULTS Patients underwent either breast conservation surgery or modified radical mastectomy. Patients were treated with 6 to 8 cycles of chemotherapy in the neoadjuvant and/or adjuvant setting. Hormone receptor-positive patients received either tamoxifen or aromatase inhibitors. Trastuzumab was offered to Her-2-neu receptor-positive patients. RT included locoregional RT and metastases-directed ablative body RT. The median progression-free survival was 39 months (95% CI: -28.7 to 50.1 mo). Two and 3 year estimated disease-free survival (DFS) was 79% and 60.5%, respectively. The median overall survival was not reached. The estimated 3-year overall survival was 87.3%. Total lesional glycolysis of metastases score and p53 status did not affect DFS. CONCLUSION Combination treatment of surgery, metastases-directed ablative RT, and ST may provide prolonged DFS in dOMBC.
Collapse
Affiliation(s)
| | | | | | | | | | - Anuj Gupta
- Department of Medical Oncology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer Hospital, Tata Memorial Centre, Varanasi, UP, India
| | | | | | | | | | - Bipinesh Sansar
- Department of Medical Oncology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer Hospital, Tata Memorial Centre, Varanasi, UP, India
| | | |
Collapse
|
2
|
Vaz SC, Woll JPP, Cardoso F, Groheux D, Cook GJR, Ulaner GA, Jacene H, Rubio IT, Schoones JW, Peeters MJV, Poortmans P, Mann RM, Graff SL, Dibble EH, de Geus-Oei LF. Joint EANM-SNMMI guideline on the role of 2-[ 18F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur J Nucl Med Mol Imaging 2024; 51:2706-2732. [PMID: 38740576 PMCID: PMC11224102 DOI: 10.1007/s00259-024-06696-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - David Groheux
- Nuclear Medicine Department, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK
- King's College London and Guy's & St Thomas' PET Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Isabel T Rubio
- Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Navarra, Spain
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Ritse M Mann
- Radiology Department, RadboudUMC, Nijmegen, The Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
- Department of Radiation Science & Technology, Technical University of Delft, Delft, The Netherlands.
| |
Collapse
|
3
|
McDonald ES, Scheel JR, Lewin AA, Weinstein SP, Dodelzon K, Dogan BE, Fitzpatrick A, Kuzmiak CM, Newell MS, Paulis LV, Pilewskie M, Salkowski LR, Silva HC, Sharpe RE, Specht JM, Ulaner GA, Slanetz PJ. ACR Appropriateness Criteria® Imaging of Invasive Breast Cancer. J Am Coll Radiol 2024; 21:S168-S202. [PMID: 38823943 DOI: 10.1016/j.jacr.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 06/03/2024]
Abstract
As the proportion of women diagnosed with invasive breast cancer increases, the role of imaging for staging and surveillance purposes should be determined based on evidence-based guidelines. It is important to understand the indications for extent of disease evaluation and staging, as unnecessary imaging can delay care and even result in adverse outcomes. In asymptomatic patients that received treatment for curative intent, there is no role for imaging to screen for distant recurrence. Routine surveillance with an annual 2-D mammogram and/or tomosynthesis is recommended to detect an in-breast recurrence or a new primary breast cancer in women with a history of breast cancer, and MRI is increasingly used as an additional screening tool in this population, especially in women with dense breasts. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Elizabeth S McDonald
- Research Author, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John R Scheel
- Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Alana A Lewin
- Panel Chair, New York University Grossman School of Medicine, New York, New York
| | - Susan P Weinstein
- Panel Vice Chair, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Basak E Dogan
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy Fitzpatrick
- Boston Medical Center, Boston, Massachusetts, Primary care physician
| | | | - Mary S Newell
- Emory University Hospital, Atlanta, Georgia; RADS Committee
| | | | - Melissa Pilewskie
- University of Michigan, Ann Arbor, Michigan; Society of Surgical Oncology
| | - Lonie R Salkowski
- University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | - H Colleen Silva
- The University of Texas Medical Branch, Galveston, Texas; American College of Surgeons
| | | | - Jennifer M Specht
- University of Washington, Seattle, Washington; American Society of Clinical Oncology
| | - Gary A Ulaner
- Hoag Family Cancer Institute, Newport Beach, California; University of Southern California, Los Angeles, California; Commission on Nuclear Medicine and Molecular Imaging
| | - Priscilla J Slanetz
- Specialty Chair, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
4
|
Chung HW, Park KS, Lim I, Noh WC, Yoo YB, Nam SE, So Y, Lee EJ. PET/MRI and Novel Targets for Breast Cancer. Biomedicines 2024; 12:172. [PMID: 38255277 PMCID: PMC10813582 DOI: 10.3390/biomedicines12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer, with its global prevalence and impact on women's health, necessitates effective early detection and accurate staging for optimal patient outcomes. Traditional imaging modalities such as mammography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging (MRI) play crucial roles in local-regional assessment, while bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) aid in evaluating distant metastasis. Despite the proven utility of 18F-FDG PET/CT in various cancers, its limitations in breast cancer, such as high false-negative rates for small and low-grade tumors, have driven exploration into novel targets for PET radiotracers, including estrogen receptor, human epidermal growth factor receptor-2, fibroblast activation protein, and hypoxia. The advent of PET/MRI, which combines metabolic PET information with high anatomical detail from MRI, has emerged as a promising tool for breast cancer diagnosis, staging, treatment response assessment, and restaging. Technical advancements including the integration of PET and MRI, considerations in patient preparation, and optimized imaging protocols contribute to the success of dedicated breast and whole-body PET/MRI. This comprehensive review offers the current technical aspects and clinical applications of PET/MRI for breast cancer. Additionally, novel targets in breast cancer for PET radiotracers beyond glucose metabolism are explored.
Collapse
Affiliation(s)
- Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
- Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 07812, Republic of Korea;
| | - Woo Chul Noh
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Sang Eun Nam
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young So
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Eun Jeong Lee
- Department of Nuclear Medicine, Seoul Medical Center, 156 Sinnae-ro, Jungnang-gu, Seoul 02053, Republic of Korea;
| |
Collapse
|
5
|
Castorina L, Comis AD, Prestifilippo A, Quartuccio N, Panareo S, Filippi L, Castorina S, Giuffrida D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. J Clin Med 2023; 13:154. [PMID: 38202160 PMCID: PMC10779934 DOI: 10.3390/jcm13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from not only a dimensional perspective but also from a metabolic point of view. In particular, the use of [18F]FDG PET allowed early confirmation of the efficacy or failure of therapy. The purpose of this review was to assess the literature concerning the response to various therapies for different subtypes of breast cancer through PET. We start by summarizing studies that investigate the validation of PET/CT for the assessment of the response to therapy in breast cancer; then, we present studies that compare PET imaging (including PET devices dedicated to the breast) with CT and MRI, focusing on the identification of the most useful parameters obtainable from PET/CT. We also focus on novel non-FDG radiotracers, as they allow for the acquisition of information on specific aspects of the new therapies.
Collapse
Affiliation(s)
- Luigi Castorina
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Alessio Danilo Comis
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Angela Prestifilippo
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Serena Castorina
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
| | - Dario Giuffrida
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| |
Collapse
|
6
|
Mainta IC, Sfakianaki I, Shiri I, Botsikas D, Garibotto V. The Clinical Added Value of Breast Cancer Imaging Using Hybrid PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:565-577. [PMID: 37741641 DOI: 10.1016/j.mric.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dedicated MR imaging is highly performant for the evaluation of the primary lesion and should regularly be added to whole-body PET/MR imaging for the initial staging. PET/MR imaging is highly sensitive for the detection of nodal involvement and could be combined with the high specificity of axillary second look ultrasound for the confirmation of the N staging. For M staging, with the exception of lung lesions, PET/MR imaging is superior to PET/computed tomography, at half the radiation dose. The predictive value of multiparametric imaging with PET/MR imaging holds promise to improve through radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Ismini C Mainta
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.
| | - Ilektra Sfakianaki
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Isaac Shiri
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Diomidis Botsikas
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva 1211, Switzerland
| |
Collapse
|
7
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Khan SA, Schuetz S, Hosseini O. Primary-Site Local Therapy for Patients with De Novo Metastatic Breast Cancer: An Educational Review. Ann Surg Oncol 2022; 29:5811-5820. [PMID: 35608802 DOI: 10.1245/s10434-022-11900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Until 2001, the paradigm guiding the management of women with de novo metastatic breast cancer (dnMBC) stipulated that primary-site locoregional therapy (PSLT) did not alter the course of metastatic disease and was necessary only for palliation of symptoms. Since 2002, retrospective data have begun questioning this paradigm. However, selection biases driving an observed survival advantage associated with PSLT in dnMBC were quickly recognized and led to several randomized clinical trials (RCTs) addressing this question. METHODS AND RESULTS Four published RCTs have since tested the value of PSLT added to systemic therapy (ST) or not, with overall survival (OS) as the primary end point. The results of three published trials show no OS benefit for the addition of PSLT: Indian Tata Memorial, U.S./Canada E2108, and Austrian POSYTIVE (although POSYTIVE did not reach full accrual). The fourth RCT (Turkey, MF07-01) shows an OS benefit for PSLT at 5 years (42 % vs 24 % in the ST arm; hazard ratio [HR], 0.66; 95 % confidence interval [CI], 0.49-0.88). However, the 5-year survival in the PSLT arm of MF07-01 is similar to that in both arms of E2108, suggesting that the worse survival in the ST arm of MF07-01 is a result of biologically worse disease (from imbalanced randomization). Locoregional control was improved by PSLT in all trials, but without improvement in quality of life. CONCLUSIONS The current evidence fails to refute the 20th century paradigm guiding management of de novo metastatic breast cancer. Discussion continues regarding the survival value of PSLT for patients with bone-only disease or oligometastases, but unbiased evidence is lacking.
Collapse
Affiliation(s)
- Seema Ahsan Khan
- Department of Surgery, Feinberg School of Medicine of Northwestern University, 303 East Superior Street, Lurie 4-111, Chicago, IL, 60611, USA.
| | - Steven Schuetz
- Department of Surgery, Feinberg School of Medicine of Northwestern University, 303 East Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Omid Hosseini
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA
| |
Collapse
|
9
|
Bruckmann NM, Morawitz J, Fendler WP, Ruckhäberle E, Bittner AK, Giesel FL, Herrmann K, Antoch G, Umutlu L, Kirchner J. A Role of PET/MR in Breast Cancer? Semin Nucl Med 2022; 52:611-618. [DOI: 10.1053/j.semnuclmed.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
|
10
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
11
|
Abstract
Imaging plays an integral role in the clinical care of patients with breast cancer. This review article focuses on the use of PET imaging for breast cancer, highlighting the clinical indications and limitations of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT, the potential use of PET/MRI, and 16α-[18F]fluoroestradiol (FES), a newly approved radiopharmaceutical for estrogen receptor imaging.
Collapse
Affiliation(s)
- Amy M Fowler
- Breast Imaging and Intervention Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Steve Y Cho
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA; Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
12
|
Pirasteh A, Lovrec P, Pedrosa I. Imaging and its Impact on Defining the Oligometastatic State. Semin Radiat Oncol 2021; 31:186-199. [PMID: 34090645 DOI: 10.1016/j.semradonc.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Successful treatment of oligometastatic disease (OMD) is facilitated through timely detection and localization of disease, both at the time of initial diagnosis (synchronous OMD) and following the initial therapy (metachronous OMD). Hence, imaging plays an indispensable role in management of patients with OMD. However, the challenges and complexities of OMD management are also reflected in the imaging of this entity. While innovations and advances in imaging technology have made a tremendous impact in disease detection and management, there remain substantial and unaddressed challenges for earlier and more accurate establishment of OMD state. This review will provide an overview of the available imaging modalities and their inherent strengths and weaknesses, with a focus on their role and potential in detection and evaluation of OMD in different organ systems. Furthermore, we will review the role of imaging in evaluation of OMD for malignancies of various primary organs, such as the lung, prostate, colon/rectum, breast, kidney, as well as neuroendocrine tumors and gynecologic malignancies. We aim to provide a practical overview about the utilization of imaging for clinicians who play a role in the care of those with, or at risk for OMD.
Collapse
Affiliation(s)
- Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Petra Lovrec
- Department of Radiology, University of Wisconsin-Madison, Madison, WI
| | - Ivan Pedrosa
- Departments of Radiology, Urology, and Advanced Imaging Research Center. University of Texas Southwestern, Dallas, TX.
| |
Collapse
|
13
|
Husseini JS, Amorim BJ, Torrado-Carvajal A, Prabhu V, Groshar D, Umutlu L, Herrmann K, Cañamaque LG, Garzón JRG, Palmer WE, Heidari P, Shih TTF, Sosna J, Matushita C, Cerci J, Queiroz M, Muglia VF, Nogueira-Barbosa MH, Borra RJH, Kwee TC, Glaudemans AWJM, Evangelista L, Salvatore M, Cuocolo A, Soricelli A, Herold C, Laghi A, Mayerhoefer M, Mahmood U, Catana C, Daldrup-Link HE, Rosen B, Catalano OA. An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases. Eur J Nucl Med Mol Imaging 2021; 48:1522-1537. [PMID: 33619599 PMCID: PMC8240455 DOI: 10.1007/s00259-021-05198-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND MR is an important imaging modality for evaluating musculoskeletal malignancies owing to its high soft tissue contrast and its ability to acquire multiparametric information. PET provides quantitative molecular and physiologic information and is a critical tool in the diagnosis and staging of several malignancies. PET/MR, which can take advantage of its constituent modalities, is uniquely suited for evaluating skeletal metastases. We reviewed the current evidence of PET/MR in assessing for skeletal metastases and provided recommendations for its use. METHODS We searched for the peer reviewed literature related to the usage of PET/MR in the settings of osseous metastases. In addition, expert opinions, practices, and protocols of major research institutions performing research on PET/MR of skeletal metastases were considered. RESULTS Peer-reviewed published literature was included. Nuclear medicine and radiology experts, including those from 13 major PET/MR centers, shared the gained expertise on PET/MR use for evaluating skeletal metastases and contributed to a consensus expert opinion statement. [18F]-FDG and non [18F]-FDG PET/MR may provide key advantages over PET/CT in the evaluation for osseous metastases in several primary malignancies. CONCLUSION PET/MR should be considered for staging of malignancies where there is a high likelihood of osseous metastatic disease based on the characteristics of the primary malignancy, hight clinical suspicious and in case, where the presence of osseous metastases will have an impact on patient management. Appropriate choice of tumor-specific radiopharmaceuticals, as well as stringent adherence to PET and MR protocols, should be employed.
Collapse
Affiliation(s)
- Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Bárbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, School of Medical Sciences,, State University of Campinas, Campinas, Brazil
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Vinay Prabhu
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lina García Cañamaque
- Department of Nuclear Medicine, Hospital Universitario Madrid Sanchinarro, Madrid, Spain
| | | | - William E Palmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Tiffany Ting-Fang Shih
- Department of Radiology and Medical Imaging, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Jacob Sosna
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Cristina Matushita
- Department of Nuclear Medicine, Hospital São Lucas of Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Cerci
- Department of Nuclear Medicine, Quanta Diagnóstico Nuclear, Curitiba, Brazil
| | - Marcelo Queiroz
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Valdair Francisco Muglia
- Department of Medical Images, Radiation Therapy and Oncohematology, Ribeirao Preto Medical School, Hospital Clinicas, University of São Paulo, Ribeirão Prêto, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School. University of São Paulo (USP), Ribeirão Prêto, Brazil
| | - Ronald J H Borra
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Evangelista
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Marco Salvatore
- Department of Radiology and Nuclear Medicine, Università Suor Orsola Benincasa di Napoli, Naples, Italy
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
| | - Alberto Cuocolo
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Andrea Soricelli
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| | - Christian Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andrea Laghi
- Department of Radiology, University of Rome "La Sapienza", Rome, Italy
| | - Marius Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Impact of 18F-FDG PET on the management of recurrent breast cancer: a meta-analysis. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Han S, Choi JY. Impact of 18F-FDG PET, PET/CT, and PET/MRI on Staging and Management as an Initial Staging Modality in Breast Cancer: A Systematic Review and Meta-analysis. Clin Nucl Med 2021; 46:271-282. [PMID: 33651022 PMCID: PMC7938917 DOI: 10.1097/rlu.0000000000003502] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We performed a systematic review and meta-analysis to evaluate the impact of 18F-FDG PET, PET/CT, and PET/MRI on staging and management during the initial staging of breast cancer. METHODS We searched the PubMed, Embase, Cochrane Library, and KoreaMed databases until March 2020 to identify studies that reported the proportion of breast cancer patients whose clinical stage or management were changed after PET scans. The proportion of changes was pooled using a random-effects model. Subgroup and metaregression analyses were performed to explore heterogeneity. RESULTS We included 29 studies (4276 patients). The pooled proportions of changes in stage and management were 25% (95% confidence interval [CI], 21%-30%) and 18% (95% CI, 14%-23%), respectively. When stage changes were stratified according to initial stage, the pooled proportions were 11% (95% CI, 3%-22%) in stage I, 20% (95% CI, 16%-24%) in stage II, and 34% (95% CI, 27%-42%) in stage III. The relative proportions of intermodality and intention-to-treat changes were 74% and 70%, respectively. Using metaregression analyses, the mean age and the proportion of initial stage III to IV and histologic grade II to III were significant factors affecting the heterogeneity in changes in stage or management. CONCLUSIONS Currently available literature suggests that the use of 18F-FDG PET, PET/CT, or PET/MRI leads to significant modification of staging and treatment in newly diagnosed breast cancer patients. Therefore, there may be a role for routine clinical use of PET imaging for the initial staging of breast cancer.
Collapse
Affiliation(s)
- Sangwon Han
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Higuchi T, Fujimoto Y, Ozawa H, Bun A, Fukui R, Miyagawa Y, Imamura M, Kitajima K, Yamakado K, Miyoshi Y. Significance of Metabolic Tumor Volume at Baseline and Reduction of Mean Standardized Uptake Value in 18F-FDG-PET/CT Imaging for Predicting Pathological Complete Response in Breast Cancers Treated with Preoperative Chemotherapy. Ann Surg Oncol 2019; 26:2175-2183. [PMID: 30941655 PMCID: PMC6545174 DOI: 10.1245/s10434-019-07325-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/25/2022]
Abstract
Background The usefulness of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography for evaluating the treatment efficacy of breast cancers is well-established; however, the predictive values of parameters such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG) remain unknown. Methods This study examined 199 breast cancers treated with primary systemic chemotherapy (PSC) followed by operation, and determined the values of maximum standardized uptake value (SUVmax), peak SUV (SUVpeak), mean SUV (SUVmean), MTV, and TLG at baseline. Among these cases, data on early changes in these metabolic parameters in 70 breast cancers were also assessed. Results A pathological complete response (pCR) was achieved in 64 breast cancers. Breast cancers with low MTV at baseline had a significantly higher pCR rate than breast cancers with high MTV (47.9% vs. 23.4%; p = 0.0005). High reduction rates (∆) of SUVmax (p = 0.0001), SUVpeak (p = 0.0001), and SUVmean (p < 0.0001) resulted in an increased pCR compared with those for low ∆. The pCR rate was highest for the combination of low MTV and high ∆SUVmean (86.7%), and lowest for high MTV and low ∆SUVmean (15.4%); the remaining combinations were intermediate (58.6%; p < 0.0001). The combination of low MTV at baseline and high ∆SUVmean was a significant and independent predictor for pCR (odds ratio 28.63; 95% confidence interval 1.94–422.42; p = 0.0146) in multivariable analysis. Conclusions Low levels of MTV at baseline and a high reduction of SUVmean after PSC was significantly associated with pCR. These findings suggest the usefulness of these metabolic parameters for predicting the treatment efficacy of breast cancers. Electronic supplementary material The online version of this article (10.1245/s10434-019-07325-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Higuchi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yukie Fujimoto
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiromi Ozawa
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ayako Bun
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Reiko Fukui
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshimasa Miyagawa
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Michiko Imamura
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Kitajima
- Department of Nuclear Medicine and PET Center, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Koichiro Yamakado
- Department of Nuclear Medicine and PET Center, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|