1
|
Guo Y, Fan Q, Ren Z, Yu N, Tan H, Ma G. Feasibility of replacing true non-contrast images with virtual non-contrast images in quantitative analysis of emphysema. RADIOLOGIE (HEIDELBERG, GERMANY) 2025:10.1007/s00117-025-01448-8. [PMID: 40341971 DOI: 10.1007/s00117-025-01448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/19/2024] [Indexed: 05/11/2025]
Abstract
OBJECTIVE To evaluate the performance of virtual non-contrast (VNC) images in comparison with true non-contrast (TNC) images in dual-energy computed tomography (DECT) for the assessment of emphysema quantification. MATERIALS AND METHODS A retrospective analysis was conducted of 57 patients who underwent three-phase chest CT. The VNC images of the arterial phase (VNC(AP)) and venous phase (VNC(VP)) were generated on an AW4.7 workstation. The objective assessment of image noise in TNC and VNC images was conducted through the quantification of image quality, which was then subjected to a double-blind review by two physicians for image quality and visual classification of emphysema. Furthermore, quantified emphysema at three distinct thresholds (950 HU, 930 HU, and 910 HU) using the three sets of images was compared. Bland-Altman plots were used to compare the quantitative discrepancies at the -950HU threshold. RESULTS There was no statistically significant difference in subjective image quality and emphysema visual classification between TNC and VNC images (all p > 0.05). In the quantitative measurement, no statistical difference was observed in image noise or total lung volume among the three groups. When compared with TNC, VNC(VP) images demonstrated no statistical difference in 15th percentile lung density (Perc 15), low attenuation volume (LAV), percentage of low attenuation area (LAA%), and mean lung density (MLD; all p > 0.05). The use of VNC images was found to reduce the radiation dose by 32.6%. CONCLUSION The use of VNC, particularly VNC(VP) images, in chest CT has the potential to supplant TNC for the quantitative assessment of emphysema, thereby streamlining scans and reducing radiation dose.
Collapse
Affiliation(s)
- Yanbing Guo
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiuju Fan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhanli Ren
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Nan Yu
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Tan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Guangming Ma
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| |
Collapse
|
2
|
Liu H, Xie Y, An X, Xu D, Cai S, Chu C, Liu G. Advances in Novel Diagnostic Techniques for Alveolar Echinococcosis. Diagnostics (Basel) 2025; 15:585. [PMID: 40075832 PMCID: PMC11898896 DOI: 10.3390/diagnostics15050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Alveolar echinococcosis (AE), caused by the larval stage of the tapeworm Echinococcus multilocularis, is a serious parasitic disease that presents significant health risks and challenges for both patients and healthcare systems. Accurate and timely diagnosis is essential for effective management and improved patient outcomes. This review summarizes the latest diagnostic methods for AE, focusing on serological tests and imaging techniques such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT). Each imaging modality has its strengths and limitations in detecting and characterizing AE lesions, such as their location, size, and invasiveness. US is often the first-line method due to its non-invasiveness and cost-effectiveness, but it may have limitations in assessing complex lesions. CT provides detailed anatomical information and is particularly useful for assessing bone involvement and calcification. MRI, with its excellent soft tissue contrast, is superior for delineating the extent of AE lesions and their relationship to adjacent structures. PET/CT combines functional and morphological imaging to provide insights into the metabolic activity of lesions, which is valuable for monitoring treatment response and detecting recurrence. Overall, this review emphasizes the importance of a multifaceted diagnostic approach that combines serological and imaging techniques for accurate and early AE diagnosis, which is crucial for effective management and improved patient outcomes.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Nuclear Medicine, School of Public Health, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Yijia Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shundong Cai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Aydin S, Irgul B, Memis KB, Kızılgoz V, Kantarci M. Characteristics of the imaging diagnosis of alveolar echinococcosis. World J Gastrointest Surg 2024; 16:2748-2754. [PMID: 39351560 PMCID: PMC11438814 DOI: 10.4240/wjgs.v16.i9.2748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 09/18/2024] Open
Abstract
Alveolar echinococcosis (AE) primarily manifests in the liver and exhibits characteristics resembling those of slow-growing malignant tumours. Untreated Echinococcus multilocularis infection can be lethal. By infiltrating the vascular systems, biliary tracts, and the hilum of the liver, it might lead to various problems. Due to its ability to infiltrate neighbouring tissues or metastasize to distant organs, AE can often be mistaken for malignancies. We present a concise overview of the epidemiological and pathophysiological characteristics of AE, as well as the clinical manifestations of the disease. This article primarily examines the imaging characteristics of AE using various imaging techniques such as ultrasonography, computed tomography (CT), magnetic resonance imaging, diffusion-weighted imaging, and virtual non-enhanced dual-energy CT. We additionally examined the contribution of radiography in the diagnosis, treatment, and monitoring of the condition.
Collapse
Affiliation(s)
- Sonay Aydin
- Department of Radiology, Erzincan Binali Yıldırım University, Faculty of Medicine, Erzincan 24100, Türkiye
| | - Baris Irgul
- Department of Radiology, Erzincan Binali Yıldırım University, Faculty of Medicine, Erzincan 24100, Türkiye
| | - Kemal Bugra Memis
- Department of Radiology, Erzincan Binali Yıldırım University, Faculty of Medicine, Erzincan 24100, Türkiye
| | - Volkan Kızılgoz
- Department of Radiology, Erzincan Binali Yıldırım University, Faculty of Medicine, Erzincan 24100, Türkiye
| | - Mecit Kantarci
- Department of Radiology, Erzurum Ataturk University, Erzurum 25000, Türkiye
| |
Collapse
|
4
|
Dane B, Ruff A, O'Donnell T, El-Ali A, Ginocchio L, Prabhu V, Megibow A. Photon-Counting Computed Tomography Versus Energy-Integrating Dual-Energy Computed Tomography: Virtual Noncontrast Image Quality Comparison. J Comput Assist Tomogr 2024; 48:251-256. [PMID: 38013203 DOI: 10.1097/rct.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to compare the image quality of portal venous phase-derived virtual noncontrast (VNC) images from photon-counting computed tomography (PCCT) with energy-integrating dual-energy computed tomography (EI-DECT) in the same patient using quantitative and qualitative analyses. METHODS Consecutive patients retrospectively identified with available portal venous phase-derived VNC images from both PCCT and EI-DECT were included. Patients without available VNC in picture archiving and communication system in PCCT or prior EI-DECT and non-portal venous phase acquisitions were excluded. Three fellowship-trained radiologists blinded to VNC source qualitatively assessed VNC images on a 5-point scale for overall image quality, image noise, small structure delineation, noise texture, artifacts, and degree of iodine removal. Quantitative assessment used region-of-interest measurements within the aorta at 4 standard locations, both psoas muscles, both renal cortices, spleen, retroperitoneal fat, and inferior vena cava. Attenuation (Hounsfield unit), quantitative noise (Hounsfield unit SD), contrast-to-noise ratio (CNR) (CNR vascular , CNR kidney , CNR spleen , CNR fat ), signal-to-noise ratio (SNR) (SNR vascular , SNR kidney , SNR spleen , SNR fat ), and radiation dose were compared between PCCT and EI-DECT with the Wilcoxon signed rank test. A P < 0.05 indicated statistical significance. RESULTS A total of 74 patients (27 men; mean ± SD age, 63 ± 13 years) were included. Computed tomography dose index volumes for PCCT and EI-DECT were 9.2 ± 3.5 mGy and 9.4 ± 9.0 mGy, respectively ( P = 0.06). Qualitatively, PCCT VNC images had better overall image quality, image noise, small structure delineation, noise texture, and fewer artifacts (all P < 0.00001). Virtual noncontrast images from PCCT had lower attenuation (all P < 0.05), noise ( P = 0.006), and higher CNR ( P < 0.0001-0.04). Contrast-enhanced structures had lower SNR on PCCT ( P = 0.001, 0.002), reflecting greater contrast removal. The SNRfat (nonenhancing) was higher for PCCT than EI-DECT ( P < 0.00001). CONCLUSIONS Virtual noncontrast images from PCCT had improved image quality, lower noise, improved CNR and SNR compared with those derived from EI-DECT.
Collapse
Affiliation(s)
- Bari Dane
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Andrew Ruff
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | | | - Alexander El-Ali
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Luke Ginocchio
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Vinay Prabhu
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Alec Megibow
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
5
|
Dane B, Freedman D, Qian K, Ginocchio L, Smereka P, Megibow A. Photon-counting CT urogram: optimal acquisition potential (kV) determination for virtual noncontrast creation. Abdom Radiol (NY) 2024; 49:868-874. [PMID: 38006415 DOI: 10.1007/s00261-023-04113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE To quantitatively and qualitatively compare the degree of iodine removal in the collecting system from PCCT urographic phase-derived virtual noncontrast (VNC) images obtained at 140 kV versus 120 kV. METHODS A retrospective PACS search identified adult patients (>18 years) who underwent a PCCT urogram for hematuria from 4/2022 to 4/2023 with available urographic phase-derived VNC images in PACS. Tube voltage (120 kV, 140 kV), body mass index, CTDIvol, dose length product (DLP), and size-specific dose estimate (SSDE) were recorded. Hounsfield Unit (HU) in both renal pelvises and the urinary bladder on urographic-derived VNC were recorded. Three radiologists qualitatively assessed the degree of iodine removal (renal pelvis, urinary bladder) and diagnostic confidence for urinary stone detection. Continuous variables were compared for 140 kV versus 120 kV with the Wilcoxon rank sum test. A p < .05 indicated statistical significance. RESULTS 63 patients (34 male; median (Q1, Q3) age: 30 (26, 34) years; 140 kV/120 kV: 30 patients/33 patients) were included. BMI, CTDIvol, DLP, and SSDE were not different for 140 kV and 120 kV (all p > .05). Median (Q1, Q3) collecting system HU (renal pelvis and bladder) was 0.9 (- 3.6, 4.4) HU at 140 kV and 10.5 (3.6, 26.7) HU at 120 kV (p = .04). Diagnostic confidence for urinary calculi was 4.6 [1.1] at 140 kV and 4.1 [1.4] at 120 kV (p = .005). Diagnostic confidence was 5/5 (all readers) in 82.2% (74/90) at 140 kV and 59.6% (59/99) at 120 kV (p < .001). CONCLUSION PCCT urographic phase-derived VNC images obtained at 140 kV had better collecting system iodine removal than 120 kV with similar patient radiation exposure. With excellent PCCT urographic phase iodine removal at 140 kV, consideration can be made to utilize a single-phase CT urogram in young patients.
Collapse
Affiliation(s)
- Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA.
| | - Daniel Freedman
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Kun Qian
- Department of Biostatistics, NYU Langone Health, 180 Madison Avenue, New York, NY, 10016, USA
| | - Luke Ginocchio
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Paul Smereka
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Alec Megibow
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
6
|
Winkelmann MT, Gassenmaier S, Walter SS, Artzner C, Nikolaou K, Bongers MN. Differentiation of Hamartomas and Malignant Lung Tumors in Single-Phased Dual-Energy Computed Tomography. Tomography 2024; 10:255-265. [PMID: 38393288 PMCID: PMC10892507 DOI: 10.3390/tomography10020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the efficacy of single-phase dual-energy CT (DECT) in differentiating pulmonary hamartomas from malignant lung lesions using virtual non-contrast (VNC), iodine, and fat quantification. Forty-six patients with 47 pulmonary lesions (mean age: 65.2 ± 12.1 years; hamartomas-to-malignant lesions = 22:25; male: 67%) underwent portal venous DECT using histology, PET-CT and follow-up CTs as a reference. Quantitative parameters such as VNC, fat fraction, iodine density and CT mixed values were statistically analyzed. Significant differences were found in fat fractions (hamartomas: 48.9%; malignancies: 22.9%; p ≤ 0.0001) and VNC HU values (hamartomas: -20.5 HU; malignancies: 17.8 HU; p ≤ 0.0001), with hamartomas having higher fat content and lower VNC HU values than malignancies. CT mixed values also differed significantly (p ≤ 0.0001), but iodine density showed no significant differences. ROC analysis favored the fat fraction (AUC = 96.4%; sensitivity: 100%) over the VNC, CT mixed value and iodine density for differentiation. The study concludes that the DECT-based fat fraction is superior to the single-energy CT in differentiating between incidental pulmonary hamartomas and malignant lesions, while post-contrast iodine density is ineffective for differentiation.
Collapse
Affiliation(s)
- Moritz T. Winkelmann
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Sebastian Gassenmaier
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Sven S. Walter
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Christoph Artzner
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
- Institute of Radiology: Diakonie Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Konstantin Nikolaou
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Malte N. Bongers
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| |
Collapse
|
7
|
Risch F, Bette S, Sinzinger A, Rippel K, Scheurig-Muenkler C, Kroencke T, Decker JA. Multiphase photon counting detector CT data sets - Which combination of contrast phase and virtual non-contrast algorithm is best suited to replace true non-contrast series in the assessment of active bleeding? Eur J Radiol 2023; 168:111125. [PMID: 37804649 DOI: 10.1016/j.ejrad.2023.111125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE Aim of this study was to determine which virtual non-contrast (VNC) reconstruction algorithm, applied to which contrast phase of computed tomography angiography, best matches true non-contrast (TNC) images in the assessment of active bleeding. METHOD Patients who underwent a triphasic scan (pre-contrast, arterial, portal venous contrast) on a photon-counting detector CT (PCD-CT) (120 kV, image quality level 68) with suspected active (tumor, postoperative, spontaneous or other) bleeding were retrospectively included in this study. Conventional (VNCConv) and a calcium-preserving VNC algorithm (VNCPC) were derived from both arterial (art) and portal venous (pv) contrast scans, and analyzed quantitatively and qualitatively by two independent and blinded raters. RESULTS 40 patients (22 female, mean age 76 years) were included. Measurements of CT values showed significant albeit small differences between TNC and VNC for most analyzed tissue regions without clear superiority of a VNC algorithm or contrast phase (e.g. ΔHU fat TNC to VNCPCpv 3.1 HU). However, qualitative analysis showed a preference to VNCPCpv in terms of image quality (on a 5-point Likert scale VNCConvart = 3.5 ± 0.8, VNCPCart = 3.7 ± 0.7, VNCConvpv = 3.7 ± 0.7, VNCPCpv = 3.8 ± 0.7) and residual calcium contrast (VNCConvart = 3.0 ± 0.8, VNCPCart = 3.5 ± 0.7, VNCConvpv = 3.6 ± 0.7, VNCPCpv = 3.9 ± 0.6). CONCLUSIONS When multiple post-contrast phases are available, VNCPC series based on portal venous phase are the most suitable replacement for an additional pre-contrast scan, with the prospect of a significant reduction in patient radiation dose.
Collapse
Affiliation(s)
- Franka Risch
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany
| | - Stefanie Bette
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany
| | - Andrea Sinzinger
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany
| | - Katharina Rippel
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany
| | - Christian Scheurig-Muenkler
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany
| | - Thomas Kroencke
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany; Centre for Advanced Analytics and Predictive Sciences, Augsburg University, Universitätsstr. 2, 86159 Augsburg, Germany.
| | - Josua A Decker
- University Hospital Augsburg, Department of Diagnostic and Interventional Radiology, Stenglinstr. 2, Augsburg, Germany
| |
Collapse
|
8
|
Ehrengut C, Denecke T, Meyer HJ. Benefits of Dual-Layer Spectral CT Imaging in Staging and Preoperative Evaluation of Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:6145. [PMID: 37834789 PMCID: PMC10573525 DOI: 10.3390/jcm12196145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Imaging of pancreatic malignancies is challenging but has a major impact on the patients therapeutic approach and outcome. In particular with pancreatic ductal adenocarcinoma (PDAC), usually a hypovascularized tumor, conventional CT imaging can be prone to errors in determining tumor extent and presence of metastatic disease. Dual-layer spectral detector CT (SDCT) is an emerging technique for acquiring spectral information without the need for prospective patient selection or specific protocols, with a detector capable of differentiating high- and low-energy photons to acquire full spectral images. In this review, we present the diagnostic benefits and capabilities of modern SDCT imaging with a focus on PDAC. We highlight the most useful virtual reconstructions in oncologic imaging and their benefits in staging and assessment of resectability in PDAC, including the assessment of tumor extent, vascular infiltration, and metastatic disease. We present imaging examples on a latest-generation SDCT scanner.
Collapse
Affiliation(s)
| | | | - Hans-Jonas Meyer
- Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Leipzig, 04103 Leipzig, Germany; (C.E.)
| |
Collapse
|
9
|
Huflage H, Kunz AS, Hendel R, Kraft J, Weick S, Razinskas G, Sauer ST, Pennig L, Bley TA, Grunz JP. Obesity-Related Pitfalls of Virtual versus True Non-Contrast Imaging-An Intraindividual Comparison in 253 Oncologic Patients. Diagnostics (Basel) 2023; 13:diagnostics13091558. [PMID: 37174949 PMCID: PMC10177533 DOI: 10.3390/diagnostics13091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. MATERIALS AND METHODS A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m2) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m2 (n = 110), pre-obese: 25-29.9 kg/m2 (n = 73), and obese: >30 kg/m2 (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. RESULTS While arterial contrast phases in DECT were associated with a higher CTDIvol than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R2 = 0.738) and SECT (R2 = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). CONCLUSION DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.
Collapse
Affiliation(s)
- Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Johannes Kraft
- Department of Radiation Oncology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Weick
- Department of Radiation Oncology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Gary Razinskas
- Department of Radiation Oncology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Pourvaziri A, Mojtahed A, Hahn PF, Gee MS, Kambadakone A, Sahani DV. Renal lesion characterization: clinical utility of single-phase dual-energy CT compared to MRI and dual-phase single-energy CT. Eur Radiol 2023; 33:1318-1328. [PMID: 36074261 DOI: 10.1007/s00330-022-09106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To assess the impact of dual-energy CT (DECT) utilization in practice by measuring the readers' confidence, the need for additional image requests, and diagnostic performance in renal lesion assessment, compared to single-energy CT (SECT) using contrast-enhanced MRI to establish the reference standard. MATERIALS AND METHODS Sixty-nine patients (M/F = 47/22) who underwent a dual-phase renal SECT (n = 34) or DECT (n = 35) and had a contrast-enhanced MRI within 180 days were retrospectively collected. Three radiologists assessed images on different sessions (SECT, DECT, and MRI) for (1) likely diagnosis (enhancing/non-enhancing); (2) diagnostic confidence (5-point Likert scale); (3) need for additional imaging test (yes/no); and (4) need for follow-up imaging (yes/no). Diagnostic accuracy was compared using AUC; p value < 0.05 was considered significant. RESULTS One hundred fifty-six lesions consisting of 18% enhancing (n = 28/156, mean size: 30.37 mm, range: 9.9-94 mm) and 82% non-enhancing (n = 128/156, mean size: 23.91 mm, range: 5.0-94.2 mm) were included. The confidence level was significantly lower for SECT than their MRI (4.50 vs. 4.80, p value < 0.05) but not significantly different for DECT and the corresponding MRI (4.78 vs. 4.78, p > 0.05). There were significantly more requests for additional imaging in the SECT session than the corresponding MRI (20% vs. 4%), which was not significantly different between DECT and their MRI counterpart session (5.7% vs. 4.9%). Inter-reader agreement was almost perfect for DECT and MRI (kappa: 0.8-1) and substantial in SECT sessions (kappa: 0.6-0.8) with comparable diagnostic accuracy between SECT, DECT, and MRI (p value > 0.05). CONCLUSION Single-phase DECT allows confident and reproducible characterization of renal masses with fewer recommendation for additional and follow-up imaging tests than dual-phase SECT and a performance similar to MRI. KEY POINTS • DECT utilization leads to similar additional image requests to MRI (5.7% vs. 4.9%, p value > 0.05), whereas single-energy CT utilization leads to significantly higher image requests (20% vs. 4%, p value < 0.05). • DECT and MRI utilization bring highly reproducible results with almost perfect inter-reader agreement (kappa: 0.8-1), better than the inter-reader agreement in SECT utilization (kappa: 0.6-0.8). • Readers' confidence was not significantly altered between DECT and their MRI readout session (p value > 0.05). In contrast, confidence in the diagnosis was significantly lower in the SECT session than their MRI readout (p value < 0.05).
Collapse
Affiliation(s)
- Ali Pourvaziri
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA, 02114, USA.
| | - Amirkasra Mojtahed
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Peter F Hahn
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Winkelmann MT, Hagen F, Artzner K, Bongers MN, Artzner C. Dual-Energy CT for Accurate Discrimination of Intraperitoneal Hematoma and Intestinal Structures. Diagnostics (Basel) 2022; 12:diagnostics12102542. [PMID: 36292231 PMCID: PMC9601488 DOI: 10.3390/diagnostics12102542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the potential of dual-energy CT (DECT) with virtual unenhanced imaging (VNC) and iodine maps (IM) to differentiate between intraperitoneal hematomas (IH) and bowel structures (BS) compared to linearly blended DECT (DE-LB) images (equivalent to single-energy CT). This retrospective study included the DECT of 30 patients (mean age: 64.5 ± 15.1 years, 19 men) with intraperitoneal hematomas and 30 negative controls. VNC, IM, and DE-LB were calculated. Imaging follow-up and surgical reports were used as references. Three readers assessed diagnostic performance and confidence in distinguishing IH and BS for DE-LB, VNC, and IM. Diagnostic confidence was assessed on a five-point Likert scale. The mean values of VNC, IM, and DE-LB were compared with nonparametric tests. Diagnostic accuracy was assessed by calculating receiver operating characteristics (ROC). The results are reported as medians with interquartile ranges. Subjective image analysis showed higher diagnostic performance (sensitivity: 96.7−100% vs. 88.2−96.7%; specificity: 100% vs. 96.7−100%; p < 0.0001; ICC: 0.96−0.99) and confidence (Likert: 5; IRQ [5−5] vs. 4, IRQ [3−4; 4−5]; p < 0.0001; ICC: 0.80−0.96) for DECT compared to DE-LB. On objective image analysis, IM values for DECT showed significant differences between IH (3.9 HU; IQR [1.6, 8.0]) and BS (39.5 HU; IQR [29.2, 43.3]; p ≤ 0.0001). VNC analysis revealed a significantly higher attenuation of hematomas (50.5 HU; IQR [44.4, 59.4]) than BS (26.6 HU; IQR [22.8, 32.4]; p ≤ 0.0001). DE-LB revealed no significant differences between hematomas (60.5 HU, IQR [52.7, 63.9]) and BS (63.9 HU, IQR [58.0, 68.8]; p > 0.05). ROC analysis revealed the highest AUC values and sensitivity for IM (AUC = 100%; threshold by Youden-Index ≤ 19 HU) and VNC (0.93; ≥34.1 HU) compared to DE-LB (0.64; ≤63.8; p < 0.001). DECT is suitable for accurate discrimination between IH and BS by calculating iodine maps and VNC images.
Collapse
Affiliation(s)
- Moritz T. Winkelmann
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Florian Hagen
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Kerstin Artzner
- Department of Internal Medicine I, Comprehensive Cancer Center, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Malte N. Bongers
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Christoph Artzner
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Correspondence:
| |
Collapse
|
12
|
Virtual non-contrast reconstructions improve differentiation between vascular enhancement and calcifications in stereotactic planning CT scans of cystic intracranial tumors. Eur J Radiol 2022; 157:110583. [DOI: 10.1016/j.ejrad.2022.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
|
13
|
Huang R, Yan J, Geng H, Yu Q, Sun Z, Liu W, Zhang L, Li C, Li Y. Reduced-Dose Full-Body CT in Lymphoma Follow-up: A Pilot Study. Curr Med Imaging 2022; 19:77-90. [PMID: 35578866 DOI: 10.2174/1573405618666220516123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND How to reduce the radiation dose received from full-body CT scans during the follow-up of lymphoma patients is a concern. OBJECTIVE The aim of the study was to investigate the image quality and radiation dose of reduced-dose full-body computerized tomography (CT) in lymphoma patients during the follow-up. METHODS 121 patients were included and divided into conventional CT group (group 1, 120-kVp, n = 61) or reduced-dose CT group (group 2, 100-kVp combined dual-energy CT (DECT), n = 60). 140-kVp polychromatic images and 70-keV monochromatic images were reconstructed from DECT. The abdominal virtual non-enhanced (VNE) images were reconstructed from monochromatic images. Two radiologists rated the overall image quality with a five-point scale and graded the depiction of lesions using a four-point scale. The objective image quality was evaluated using image noise, signal-to-noise ratio, and contrast-to-noise ratio. The radiation dose and image quality were compared between the groups. RESULTS The comparable subjective image quality was observed between 70-keV and 120-kVp images in the neck, while 120-kVp images showed better objective image quality. 70-keV images showed better objective image quality in the chest. While the subjective image quality of abdominal VNE images was inferior to that of true non-enhanced images, the improved objective image quality was observed in VNE images. In the abdominal arterial phase, similar subjective image quality was observed between the groups. Abdominal 70-keV images in the arterial phase showed improved objective image quality. Similar image quality was obtained in the abdominal venous phase between the groups. The effective radiation dose in group 2 showed a significant reduction. CONCLUSION The application of reduced-dose full-body CT can significantly reduce the radiation dose for lymphoma patients during the follow-up while maintaining or improving the image quality.
Collapse
Affiliation(s)
- Renjun Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Jiulong Yan
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Hongzhi Geng
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Qiuyu Yu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Zongqiong Sun
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Wenyan Liu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Ling Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province 510060, P.R. China
- State Key Laboratory of Oncology in South Chinal, Guangzhou City, Guangdong Province 510060, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province 510060, P.R. China
| | - Caixia Li
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| | - Yonggang Li
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
- Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu Province 215000, P.R. China
| |
Collapse
|
14
|
Bowel Peristalsis Artifact on Dual-Energy CT: In Vitro Study on the Influence of Different Dual-Energy CT Platforms and Enteric Contrast Agents. AJR Am J Roentgenol 2021; 218:290-299. [PMID: 34406059 DOI: 10.2214/ajr.21.26345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND. The value of dual-energy CT (DECT) for bowel wall assessment is increasingly recognized. Although technical improvements reduce peristalsis artifact in conventional CT, the effects of peristalsis on DECT image reconstructions remain poorly studied. OBJECTIVE. The purpose of this study was to evaluate the influence of different DECT scanners and enteric contrast agents on the severity of bowel peristalsis artifact in vitro. METHODS. To simulate bowel peristalsis, a 3-cm-diameter corrugated hollow tube representing the bowel was oscillated constantly in the z-axis within a larger water-filled cylinder. The bowel was serially filled with air, water, and iodinated or experimental dark contrast material and scanned on four different DECT platforms (spectral detector, rapid peak kilovoltage switching, split filter, and dual source) to reconstruct 120-kVp-like and iodine images. Two readers rated each image reconstruction for artifact severity from 0 (none) to 3 (severe) and recorded the degree to which iodine images depicted bowel wall hyperattenuation on 120-kVp-like images as artifactual. Artifact severity scores were compared by ANOVA with Bonferroni correction. RESULTS. Interrater agreement on artifact scores was excellent (intraclass correlation coefficient, 0.82 [95% CI, 0.79-0.84]). For 120-kVp-like images, mean peristalsis artifact scores were lower (all p < .001) for split-filter (1.47) and dual-source (1.86) scanners than for spectral-detector (2.58) and rapid-kilovoltage-switching (2.74) scanners. Compared with those on 120-kVp images, peristalsis artifacts on iodine images were less severe for spectral-detector (score, 1.03; p < .001) and rapid-kilovoltage-switching (2.09; p < .001) systems but more severe for dual-source (2.77; p < .001) and split-filter (2.62; p < .001) systems. Peristalsis artifact was rated less severe with experimental dark bowel contrast medium (score, 1.79) than with other bowel contrast agents (all p < .001). Iodine images helped identify bowel wall hyperattenuation as artifactual in 94.7% of reviewed cases for spectral-detector and 40.7% of cases for rapid-kilovoltage-switching scanners. CONCLUSION. For spectral-detector and rapid-kilovoltage-switching DECT, iodine images minimize peristalsis artifact, but for dual-source and split-filter DECT, mixed 120-kVp-like images are preferred. Compared with iodinated contrast material and water, experimental dark bowel contrast material reduces peristalsis artifact. CLINICAL IMPACT. Knowledge of the preferred images for reducing peristalsis artifact can lessen the effect of peristalsis on clinical DECT interpretation. Dark enteric contrast agents, when they become clinically available, may further reduce the effects of peristalsis.
Collapse
|
15
|
Park A, Lee YH, Seo HS. Could both intrinsic and extrinsic iodine be successfully suppressed on virtual non-contrast CT images for detecting thyroid calcification? Jpn J Radiol 2021; 39:580-588. [PMID: 33506433 DOI: 10.1007/s11604-021-01095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Although virtual non-contrast (VNC) successfully removes iodinated contrast, uncertainty exists regarding the feasibility of VNC to suppress iodine for detecting thyroid calcification. Therefore, we evaluated whether both intrinsic and extrinsic iodine attenuation were suppressed on VNC images. MATERIAL AND METHODS We enrolled 128 patients (male: female 17:111; age 48.0 ± 10.4 years) who underwent dual-layer dual-energy CT (DL-DECT) examination before their thyroid cancer surgeries. Two additional sets of VNC (VNCu, VNCc) images were retrospectively generated from their true unenhanced (TUE) and true contrast-enhanced (TCE) series. We compared CT attenuation values measured on the VNCu and VNCc images by drawing identical regions of interest encompassing thyroid parenchyma, then subjectively determined the concordance of calcification. RESULTS Although CT attenuation discrepancies between the VNCu and VNCc were significant (2.0 ± 5.7HU, p < 0.001),61.7%, 89.1%, and 100.0% of all measurements were < 5HU, < 10HU, and < 15HU. Based on Bland-Altman analysis, the limits of agreement were - 9.2HU and 13.2HU, whereas the proportional differences were small for VNC images generated from both TUE and TCE images. There was no discordance between two VNC image sets in detecting thyroid calcification. CONCLUSIONS VNC technique could be a feasible method to suppress both intrinsic and extrinsically administered iodine for detecting thyroid calcification.
Collapse
Affiliation(s)
- Arim Park
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.,Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hen Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.
| | - Hyung Suk Seo
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| |
Collapse
|
16
|
Masuda S, Sugisawa K, Minamishima K, Yamazaki A, Jinzaki M. Assessment of the image quality of virtual monochromatic spectral computed tomography images: a phantom study considering object contrast, radiation dose, and frequency characteristics. Radiol Phys Technol 2021; 14:41-49. [PMID: 33400064 DOI: 10.1007/s12194-020-00597-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022]
Abstract
Fast kilovoltage (kVp)-switching technology cannot obtain conventional 120 kVp images; thus, 70 keV virtual monochromatic spectral computed tomography (CT) images (VMSI) are generally used. The contrast-to-noise ratio (CNR) is used to evaluate the image quality of VMSI; however, CNR does not include frequency characteristics. The present study aimed to investigate the evaluation methods of VMSI considering frequency characteristics by comparing the image quality of 70 keV VMSI with that of conventional 120 kVp images. The evaluated object contrasts were 70 and 300 Hounsfield units (HU). Scans used two radiation dose levels: low (LD) and standard (SD). The volume CT dose index of LD and SD was 4.8- and 12 mGy, respectively. Images were reconstructed by filtered back projection, evaluating CNR, noise power spectrum (NPS), task transfer function (TTF), and system performance (SP) function calculated as TTF2/ NPS. The total NPS values (spatial frequency range: 0.2 ~ 0.4 mm-1) of 70 keV VMSI were higher than those of 120 kVp images. The spatial frequency TTF values that reached 10% (f10%) of the 70 keV VMSI changed based on object contrast. For the low-contrast condition, a lower f10% was observed with 70 keV VMSI. The CNR of 70 keV VMSI was comparable to that of 120 kVp images in low- and high-contrast conditions. However, for 70 keV VMSI, SP of low-contrast was low, and SP of high-contrast was high, compared with those of 120 kVp images. This study suggested that only CNR was not sufficient to evaluate the image quality of VMSI; thus, evaluation methods considering frequency characteristics should be used.
Collapse
Affiliation(s)
- Shota Masuda
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Koichi Sugisawa
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuya Minamishima
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihisa Yamazaki
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|