1
|
Ahlawat S, Kumar NM, Ghasemi A, Fayad LM. Three-Dimensional Magnetic Resonance Imaging in the Musculoskeletal System: Clinical Applications and Opportunities to Improve Imaging Speed and Resolution. Invest Radiol 2025; 60:184-197. [PMID: 39437020 DOI: 10.1097/rli.0000000000001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
ABSTRACT Although conventional 2-dimensional magnetic resonance (MR) sequences have traditionally comprised the foundational imaging strategy for visualization of musculoskeletal anatomy and pathology, the emergence of isotropic volumetric 3-dimensional sequences offers to advance musculoskeletal evaluation with comparatively similar image quality and diagnostic performance, shorter acquisition times, and the added advantages of improved spatial resolution and multiplanar reformation capability. The purpose of this review article is to summarize the available 3-dimensional MR sequences and their role in the management of patients with musculoskeletal disorders, including sports imaging, rheumatologic conditions, peripheral nerve imaging, bone and soft tissue tumor imaging, and whole-body MR imaging.
Collapse
Affiliation(s)
- Shivani Ahlawat
- From The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (S.A., N.K., A.G., L.M.F.); Department of Orthopedic Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD (L.M.F.); and Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD (L.M.F.)
| | | | | | | |
Collapse
|
2
|
Dai M, Zhao H, Sun P, Wang J, Kong C, Liu X, Duan D, Liu X. Chronic ankle instability: a cadaveric anatomical and 3D high-resolution MRI study for surgical reconstruction procedures. Insights Imaging 2024; 15:249. [PMID: 39400621 PMCID: PMC11479647 DOI: 10.1186/s13244-024-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES To quantitatively investigate the anatomy of the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) for surgical reconstruction procedures in chronic ankle instability (CAI). METHODS 3D MRI was performed on five fresh-frozen cadaveric ankles using six different spatial resolutions (0.3 × 0.3 × 0.3 mm3, 0.45 × 0.45 × 0.45 mm3, 0.6 × 0.6 × 0.6 mm3, 0.75 × 0.75 × 0.75 mm3, 0.9 × 0.9 × 0.9 mm3, 1.05 × 1.05 × 1.05 mm3). After comparing the MRI results with cadaver dissection, a resolution of 0.45 × 0.45 × 0.45 mm³ was selected for bilateral ankles MRI on 24 volunteers. Classification of the ATFL and four distances of surgically relevant bony landmarkers were analyzed (distance 1 and 3, the fibular origin of the ATFL and CFL to the tip of fibula, respectively; distance 2, the talar insertion of the ATFL to the bare zone of talus; distance 4, the calcaneal insertion of the CFL to the peroneal tubercle). RESULTS In subjective evaluation, the interobserver ICC was 0.95 (95% confidence interval (CI): 0.94-0.97) between two readers. The spatial resolution of 0.3 × 0.3 × 0.3 mm3 and 0.45 × 0.45 × 0.45 mm3 received highest subjective score on average and demonstrated highest consistency with autopsy measurements in objective evaluation. Measurements on the 48 volunteer ankles, distance 1 in type I and II were 12.65 ± 2.08 mm, 13.43 ± 2.06 mm (superior-banded in Type II) and 7.69 ± 2.56 mm (inferior-banded in Type II) (means ± SD), respectively. Distance 2 in type I and II were 10.90 ± 2.24 mm, 11.07 ± 2.66 mm (superior-banded in Type II), and 18.44 ± 3.28 mm (inferior-banded in Type II), respectively. Distance 3 and 4 were 4.71 ± 1.04 mm and 14.35 ± 2.22 mm, respectively. CONCLUSION We demonstrated the feasibility of quantifying the distances between bony landmarkers for surgical reconstruction surgery in CAI using high-resolution 3D MRI. CRITICAL RELEVANCE STATEMENT High-resolution 3D MRI examination may have a guiding effect on the preoperative evaluation of chronic ankle instability patients. KEY POINTS Spatial resolutions of 0.3 × 0.3 × 0.3 mm3 and 0.45 × 0.45 × 0.45 mm3 demonstrated highest consistency with autopsy measurements. The spatial resolution of 0.45 × 0.45 × 0.45 mm3 was conformed more to clinical needs. 3D MRI can assist surgeons in developing preoperative plans for chronic ankle instability.
Collapse
Affiliation(s)
- Meng Dai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, 100000, Beijing, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, 100000, Beijing, China
| | - Caixia Kong
- Department of Endocrinology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Deyu Duan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Province Key Laboratory of Molecular Imaging, 430022, Wuhan, China.
| |
Collapse
|
3
|
Akram R, Duarte Silva F, de Silva LNM, Gupta A, Basha A, Chhabra A. Three-Dimensional MRI of Foot and Ankle: Current Perspectives and Advantages Over 2D MRI. Semin Roentgenol 2024; 59:447-466. [PMID: 39490039 DOI: 10.1053/j.ro.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Rubeel Akram
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Anuj Gupta
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Adil Basha
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage. Clin Podiatr Med Surg 2024; 41:685-706. [PMID: 39237179 DOI: 10.1016/j.cpm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, Forchstrasse 340, Zurich 8008, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
5
|
Bajaj S, Chhabra A, Taneja AK. 3D isotropic MRI of ankle: review of literature with comparison to 2D MRI. Skeletal Radiol 2024; 53:825-846. [PMID: 37978990 DOI: 10.1007/s00256-023-04513-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The ankle joint has complex anatomy with different tissue structures and is commonly involved in traumatic injuries. Magnetic resonance imaging (MRI) is the primary imaging modality used to assess the soft tissue structures around the ankle joint including the ligaments, tendons, and articular cartilage. Two-dimensional (2D) fast spin echo/turbo spin echo (FSE/TSE) sequences are routinely used for ankle joint imaging. While the 2D sequences provide a good signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) with high spatial resolution, there are some limitations to their use owing to the thick slices, interslice gaps leading to partial volume effects, limited fluid contrast, and the need to acquire separate images in different orthogonal planes. The 3D MR imaging can overcome these limitations and recent advances have led to technical improvements that enable its widespread clinical use in acceptable time periods. The volume imaging renders the advantage of reconstructing into thin continuous slices with isotropic voxels enabling multiplanar reconstructions that helps in visualizing complex anatomy of the structure of interest throughout their course with improved sharpness, definition of anatomic variants, and fluid conspicuity of lesions and injuries. Recent advances have also reduced the acquisition time of the 3D datasets making it more efficient than 2D sequences. This article reviews the recent technical developments in the domain 3D MRI, compares imaging with 3D versus 2D sequences, and demonstrates the use-case scenarios with interesting cases, and benefits of 3D MRI in evaluating various ankle joint components and their lesions.
Collapse
Affiliation(s)
- Suryansh Bajaj
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Avneesh Chhabra
- Musculoskeletal Radiology Division, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
- Johns Hopkins University, Baltimore, MD, USA
- Walton Center of Neurosciences, Liverpool, UK
- University of Dallas, Richardson, TX, USA
| | - Atul Kumar Taneja
- Musculoskeletal Radiology Division, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Akatsuka Y, Teramoto A, Murahashi Y, Takahashi K, Imamura R, Takashima H, Watanabe K, Yamashita T. Quantitative assessment of anterior talofibular ligament quality in chronic lateral ankle instability using magnetic resonance imaging T2* value. Skeletal Radiol 2024; 53:733-739. [PMID: 37857750 DOI: 10.1007/s00256-023-04480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To determine T2* normal reference values for anterior talofibular ligament (ATFL) and to investigate the feasibility of the quantitative ATFL quality evaluation in chronic lateral ankle instability (CLAI) using T2* values. MATERIALS AND METHODS This study enrolled 15 patients with CLAI and 30 healthy volunteers. The entire ATFL T2* values from the MRI T2* mapping were measured. The prediction equation (variables: age, height, and weight) in a multiple linear regression model was used to calculate the T2* normal reference value in the healthy group. T2* ratio was defined as the ratio of the actual T2* value of the patient's ATFL to the normal reference value for each patient. A Telos device was used to measure the talar tilt angle (TTA) from the stress radiograph. RESULTS T2* values of ATFL in the healthy and CLAI groups were 10.82 ± 1.84 ms and 14.36 ± 4.30 ms, respectively, which are significantly higher in the CLAI group (P < 0.05). The prediction equation of the normal reference T2* value was [14.9 + 0.14 × age (years) - 4.7 × height (m) - 0.03 × weight (kg)] (R2 = 0.65, P < 0.0001). A significant positive correlation was found between the T2* ratio and TTA (r = 0.66, P = 0.007). CONCLUSION MRI T2* values in patients with CLAI were higher than those in healthy participants, and the T2* ratio correlated with TTA, suggesting that T2* values are promising for quantitative assessment of ATFL quality preoperatively.
Collapse
Affiliation(s)
- Yoshihiro Akatsuka
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Yasutaka Murahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Katsunori Takahashi
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Rui Imamura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Hiroyuki Takashima
- Faculty of Health Sciences, Hokkaido University, North-12, West-15, Kita-ku, Sapporo, 060-0812, Japan
| | - Kota Watanabe
- Second Division of Physical Therapy, Sapporo Medical University School of Health Sciences, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
7
|
Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage. Foot Ankle Clin 2023; 28:529-550. [PMID: 37536817 DOI: 10.1016/j.fcl.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, Forchstrasse 340, Zurich 8008, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
8
|
Keller G, Estler A, Herrmann J, Afat S, Othman AE, Nickel D, Koerzdoerfer G, Springer F. Prospective intraindividual comparison of a standard 2D TSE MRI protocol for ankle imaging and a deep learning-based 2D TSE MRI protocol with a scan time reduction of 48. LA RADIOLOGIA MEDICA 2023; 128:347-356. [PMID: 36807027 PMCID: PMC10020308 DOI: 10.1007/s11547-023-01604-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Magnetic resonance imaging (MRI) scan time remains a limited and valuable resource. This study evaluates the diagnostic performance of a deep learning (DL)-based accelerated TSE study protocol compared to a standard TSE study protocol in ankle MRI. MATERIAL AND METHODS Between October 2020 and July 2021 forty-seven patients were enrolled in this study for an intraindividual comparison of a standard TSE study protocol and a DL TSE study protocol either on a 1.5 T or a 3 T scanner. Two radiologists evaluated the examinations regarding structural pathologies and image quality categories (5-point-Likert-scale; 1 = "non diagnostic", 5 = "excellent"). RESULTS Both readers showed almost perfect/perfect agreement of DL TSE with standard TSE in all analyzed structural pathologies (0.81-1.00) with a median "good" or "excellent" rating (4-5/5) in all image quality categories in both 1.5 T and 3 T MRI. The reduction of total acquisition time of DL TSE compared to standard TSE was 49% in 1.5 T and 48% in 3 T MRI to a total acquisition time of 5 min 41 s and 5 min 46 s. CONCLUSION In ankle MRI the new DL-based accelerated TSE study protocol delivers high agreement with standard TSE and high image quality, while reducing the acquisition time by 48%.
Collapse
Affiliation(s)
- Gabriel Keller
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Arne Estler
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Universitätsklink für Neuroradiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee Am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Gregor Koerzdoerfer
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee Am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Department of Diagnostic Radiology, BG Trauma Center Tübingen, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| |
Collapse
|
9
|
Wong OL, Poon DM, Kam MK, Lo GG, Fung WW, Man SY, Xue C, Yu SK, Cheung KY, Yuan J. 3D‐T2W‐TSE radiotherapy treatment planning MRI using compressed sensing acceleration for prostate cancer: Image quality and delineation value. Asia Pac J Clin Oncol 2022; 18:e369-e377. [DOI: 10.1111/ajco.13752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Oi Lei Wong
- Research Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Darren M.C. Poon
- Comprehensive Oncology Centre Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Miachael K.M. Kam
- Comprehensive Oncology Centre Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Gladys G. Lo
- Department of Diagnostic and Interventional Radiology Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Winky W.K. Fung
- Department of Radiotherapy Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Shei Yee Man
- Department of Radiotherapy Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Cindy Xue
- Research Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Siu Ki Yu
- Medical Physics Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Kin Yin Cheung
- Medical Physics Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Jing Yuan
- Research Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| |
Collapse
|
10
|
Jang JS, Lee HB, Suh CH, Lee MH. Image quality and acquisition time assessments for phase oversampling in compressed sensing sensitivity encoding: Comparison with conventional SENSE. J Appl Clin Med Phys 2021; 23:e13509. [PMID: 34953027 PMCID: PMC8833279 DOI: 10.1002/acm2.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
This study compared sensitivity encoding (SENSE) and compressed sensing sensitivity encoding (CS-SENSE) for phase oversampling distance and assessed its impact on image quality and image acquisition time. The experiment was performed with a large diameter phantom using 16-channel anterior body coils. All imaging data were divided into three groups according to the parallel imaging technique and oversampling distances: groups A (SENSE with phase oversampling distance of 150 mm), B (CS-SENSE with phase oversampling distance of 100 mm), and C (CS-SENSE with phase oversampling distance of 75 mm). No statistically significant differences were observed among groups A, B, and C regarding both T2 and T1 turbo spin-echo (TSE) sequences using an acceleration factor (AF) of 2 (p = 0.301 and 0.289, respectively). In comparison with AF 2 of group A, the scan time of AF 2 of groups B and C was reduced by 11.2% and 23.5% (T2 TSE) and 15.8% and 22.7% (T1 TSE), respectively, while providing comparable image quality. Significant image noise and aliasing artifact were more evident at AF ≥ 2 in group A compared with groups B and C. CS-SENSE with a less phase oversampling distance can reduce image acquisition time without image quality degradation compared with that of SENSE, despite the increase in aliasing artifact as the AF increased in both CS-SENSE and SENSE.
Collapse
Affiliation(s)
- Ji Sung Jang
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, South Korea
| | - Ho Beom Lee
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, South Korea
| | - Chong Hyun Suh
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, South Korea
| | - Min Hee Lee
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, South Korea
| |
Collapse
|
11
|
Fritz B, Fritz J, Sutter R. 3D MRI of the Ankle: A Concise State-of-the-Art Review. Semin Musculoskelet Radiol 2021; 25:514-526. [PMID: 34547816 DOI: 10.1055/s-0041-1731332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful imaging modality for visualizing a wide range of ankle disorders that affect ligaments, tendons, and articular cartilage. Standard two-dimensional (2D) fast spin-echo (FSE) and turbo spin-echo (TSE) pulse sequences offer high signal-to-noise and contrast-to-noise ratios, but slice thickness limitations create partial volume effects. Modern three-dimensional (3D) FSE/TSE pulse sequences with isotropic voxel dimensions can achieve higher spatial resolution and similar contrast resolutions in ≤ 5 minutes of acquisition time. Advanced acceleration schemes have reduced the blurring effects of 3D FSE/TSE pulse sequences by affording shorter echo train lengths. The ability for thin-slice partitions and multiplanar reformation capabilities eliminate relevant partial volume effects and render modern 3D FSE/TSE pulse sequences excellently suited for MRI visualization of several oblique and curved structures around the ankle. Clinical efficiency gains can be achieved by replacing two or three 2D FSE/TSE sequences within an ankle protocol with a single isotropic 3D FSE/TSE pulse sequence. In this article, we review technical pulse sequence properties for 3D MRI of the ankle, discuss practical considerations for clinical implementation and achieving the highest image quality, compare diagnostic performance metrics of 2D and 3D MRI for major ankle structures, and illustrate a broad spectrum of ankle abnormalities.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, University Hospital Balgrist, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jan Fritz
- New York University Grossman School of Medicine, New York University, New York, New York
| | - Reto Sutter
- Department of Radiology, University Hospital Balgrist, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Gao T, Lu Z, Wang F, Zhao H, Wang J, Pan S. Using the Compressed Sensing Technique for Lumbar Vertebrae Imaging: Comparison with Conventional Parallel Imaging. Curr Med Imaging 2021; 17:1010-1017. [PMID: 33573574 PMCID: PMC8653421 DOI: 10.2174/1573405617666210126155814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To compare conventional sensitivity encoding turbo spin-echo (SENSE-TSE) with compressed sensing plus SENSE turbo spin-echo (CS-TSE) in lumbar vertebrae magnetic resonance imaging (MRI). METHODS This retrospective study of lumbar vertebrae MRI included 600 patients; 300 patients received SENSE-TSE and 300 patients received CS-TSE. The SENSE acceleration factor was 1.4 for T1WI, 1.7 for T2WI, and 1.7 for PDWI. The CS total acceleration factor was 2.4, 3.6, 4.0, and 4.0 for T1WI, T2WI, PDWI sagittal, and T2WI transverse, respectively. The image quality of each MRI sequence was evaluated objectively by the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) and subjectively on a five-point scale. Two radiologists independently reviewed the MRI sequences of the 300 patients receiving CS-TSE, and their diagnostic consistency was evaluated. The degree of intervertebral foraminal stenosis and nerve root compression was assessed using the T1WI sagittal and T2WI transverse images. RESULTS The scan time was reduced from 7 min 28 s to 4 min 26 s with CS-TSE. The median score of nerve root image quality was 5 (p > 0.05). The diagnostic consistency using CS-TSE images between the two radiologists was high for diagnosing lumbar diseases (κ > 0.75) and for evaluating the degree of lumbar foraminal stenosis and nerve root compression (κ = 0.882). No differences between SENSE-TSE and CS-TSE were observed for sensitivity, specificity, positive predictive value, or negative predictive value. CONCLUSION CS-TSE has the potential for diagnosing lumbar vertebrae and disc disorders.
Collapse
Affiliation(s)
- Tianyang Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhao Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengzhe Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiazheng Wang
- Department of Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Bratke G, Rau R, Kabbasch C, Zäske C, Maintz D, Haneder S, Große Hokamp N, Persigehl T, Siedek F, Weiss K. Speeding up the clinical routine: Compressed sensing for 2D imaging of lumbar spine disc herniation. Eur J Radiol 2021; 140:109738. [PMID: 33945923 DOI: 10.1016/j.ejrad.2021.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Increasing economic pressure and patient demands for comfort require an ever-increasing acceleration of scan times without compromising diagnostic certainty. This study tested the new acceleration technique Compressed SENSE (CS-SENSE) as well as different reconstruction methods for the lumbar spine. METHODS In this prospective study, 10 volunteers and 14 patients with lumbar disc herniation were scanned using a sagittal 2D T2 turbo spin echo (TSE) sequence applying different acceleration factors of SENSE and CS-SENSE. Gradient echo (GRE), autocalibration (CS-Auto) and TSE prescans were tested for reconstruction. Images were analysed by two readers regarding anatomical delineation, diagnostic certainty (for patients only) and image quality as well as objectively calculating the root mean square error (RMSE), structural similarity index (SSIM), SNR and CNR. The Friedman test and Chi-squared were used for ordinal, ANOVA for repeated measurements and Tukey Kramer test for continuous data. Cohen's kappawas calculated for interreader reliability. RESULTS CS-SENSE outperformed SENSE and CS-Auto regarding RMSE (e.g. CS-SENSE 1.5: 43.03 ± 11.64 versus SENSE 1.5: 80.41 ± 17.66; p = 0.0038) and SSIM as well as in the subjective rating for CS-SENSE 3 TSE. In the patient setting image quality was unchanged in all subjective criteria up to CS-SENSE 3 TSE (all p > 0.05) compared to standard T2 with 43 % less scan time while the GRE prescan only allowed a reduction of 32 %. CONCLUSION Combining a TSE prescan with CS-SENSE enables significant scan time reductions with unchanged ratings for lumbar spine disc herniation making this superior to the currently used SENSE acceleration or GRE reconstructions.
Collapse
Affiliation(s)
- Grischa Bratke
- Department of Radiology, University of Cologne, Cologne, Germany.
| | - Robert Rau
- Department of Radiology, Kantonsspital Graubünden, Chur, Switzerland
| | | | - Charlotte Zäske
- Department of Radiology, University of Cologne, Cologne, Germany
| | - David Maintz
- Department of Radiology, University of Cologne, Cologne, Germany
| | - Stefan Haneder
- Department of Radiology, University of Cologne, Cologne, Germany
| | | | | | - Florian Siedek
- Department of Radiology, University of Cologne, Cologne, Germany
| | | |
Collapse
|
14
|
Takashima H, Nakanishi M, Imamura R, Akatsuka Y, Nagahama H, Ogon I. Optimal acceleration factor for image acquisition in turbo spin echo: diffusion-weighted imaging with compressed sensing. Radiol Phys Technol 2021; 14:100-104. [PMID: 33471262 DOI: 10.1007/s12194-021-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
In this study, the change in the image quality and apparent diffusion coefficient (ADC) with increase in the acceleration factor (AF) was analyzed and the most optimal AF was determined to reduce the scan time while preserving the image quality. The AF was changed from 2 to 20 in the MR acquisitions. The similarities between the accelerated and reference images were determined based on the structural similarity (SSIM) index for DWI image and coefficient of variation (%CV) for ADC. The SSIM index decreased significantly when the AF ≥ 8 compared with when the AF = 2 (p < 0.05). In the reference image, the %CV of the ADC increased significantly when the AF ≥ 10 (p < 0.01). In conclusion, a remarkable decrease in the image quality and ADC was observed when the AF was > 8. Thus, an AF < 8 would be optimal for reducing the scan time while preserving the image quality.
Collapse
Affiliation(s)
- Hiroyuki Takashima
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan. .,Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Mitsuhiro Nakanishi
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Rui Imamura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Yoshihiro Akatsuka
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Hiroshi Nagahama
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Izaya Ogon
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Li G, Wu D, Xu Z, Zuo X, Li X, Chang S, Dai Y. Evaluation of an accelerated 3D modulated flip-angle technique in refocused imaging with an extended echo-train sequence with compressed sensing for imaging of the knee: comparison with routine 2D MRI sequences. Clin Radiol 2020; 76:158.e13-158.e18. [PMID: 33250173 DOI: 10.1016/j.crad.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
AIM To accelerate the acquisition of high-resolution magnetic resonance imaging (MRI) by using the three-dimensional (3D) matrix sequence with compressed sensing and to compare it with conventional two-dimensional (2D) proton-density (PD) and fast spin-echo (FSE) sequences. MATERIALS AND METHODS 3D matrix, 2D FSE, and PD sequences were acquired from 68 participants using 3 T magnetic resonance imaging (MRI). Two radiologists scored image quality independently on a four-point scale. The structural similarity index (SSIM), and signal- (SNRs) and contrast-to-noise ratios (CNRs) of different anatomical structures of the knee were assessed and compared between sequences using Wilcoxon signed-rank tests and Cohen's kappa. RESULTS The median acquisition time reduction was 44.5%. There was a substantial to perfect agreement for the rating between the 3D matrix FSE and 2D FSE or PD sequences when evaluating cartilage, subchondral bone, and ligaments (κ=0.783-872, p>0.05). The mean SSIM values between the 3D matrix FSE and 2D FSE, and between the 3D matrix PD and 2D PD sequences was 0.994 and 0.971, respectively, which are acceptable. No significant differences were found in SNR between the 3D matrix FSE and 2D FSE, and between the 3D matrix PD and 2D PD sequences, even though the SNR appeared to be higher on routine 2D sequences. The CNR of subchondral bone-meniscus, subchondral bone-joint fluid, and meniscus-joint fluid did not differentiate significantly between the 3D matrix sequence and routine 2D sequences. CONCLUSIONS 3D matrix reduced the acquisition time in routine clinical knee MRI without the loss in image quality, SNR, and CNR.
Collapse
Affiliation(s)
- G Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - D Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Z Xu
- Xinzhuang Community Health Center, Shanghai, China
| | - X Zuo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - X Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - S Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Y Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| |
Collapse
|
16
|
Abstract
Deep learning methods have shown promising results for accelerating quantitative musculoskeletal (MSK) magnetic resonance imaging (MRI) for T2 and T1ρ relaxometry. These methods have been shown to improve musculoskeletal tissue segmentation on parametric maps, allowing efficient and accurate T2 and T1ρ relaxometry analysis for monitoring and predicting MSK diseases. Deep learning methods have shown promising results for disease detection on quantitative MRI with diagnostic performance superior to conventional machine-learning methods for identifying knee osteoarthritis.
Collapse
Affiliation(s)
- Fang Liu
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Sartoretti T, Sartoretti E, Wyss M, Schwenk Á, van Smoorenburg L, Eichenberger B, Najafi A, Binkert C, Becker AS, Sartoretti-Schefer S. Compressed SENSE accelerated 3D T1w black blood turbo spin echo versus 2D T1w turbo spin echo sequence in pituitary magnetic resonance imaging. Eur J Radiol 2019; 120:108667. [PMID: 31550639 DOI: 10.1016/j.ejrad.2019.108667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/23/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE To compare image quality between a 2D T1w turbo spin echo (TSE) sequence and a Compressed SENSE accelerated 3D T1w black blood TSE sequence (equipped with a black blood prepulse for blood signal suppression) in pre- and postcontrast imaging of the pituitary and to assess scan time reductions. METHODS AND MATERIALS For this retrospective study, 56 patients underwent pituitary MR imaging at 3T. 28 patients were scanned with the 2D- and 28 patients with the accelerated 3D sequence. Two board certified neuroradiologists independently evaluated 13 qualitative image features (12 features on postcontrast- and 1 feature on precontrast images).SNR and CNR measurements were obtained. Interreader agreement was assessed with the intraclass correlation coefficient while differences in scores were assessed with exact Wilcoxon rank sum tests. RESULTS The interreader agreement ranged from fair (visibility of the ophthalmic nerve, ICC = 0.57) to excellent (presence and severity of pulsation artefacts, ICC = 0.97). The Compressed SENSE accelerated 3D sequence outperformed the 2D sequence in terms of "overall image quality" (median: 4 versus 3, p = 0.04) and "presence and severity of pulsation artefacts" (median: 0 versus 1, p < 0.001). There were no significant differences in any other qualitative and quantitative (SNR, CNR) image quality features. Scan time was reduced by 03:53 min (33.1%) by replacing the 2D with the 3D sequence. CONCLUSION The Compressed SENSE accelerated 3D T1w black blood TSE sequence is a reliable alternative for the standard 2D sequence in pituitary imaging. The black blood prepulse may aid in suppression of pulsation artefacts.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Elisabeth Sartoretti
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Michael Wyss
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland; Philips Healthsystems, Zürich, Switzerland.
| | - Árpád Schwenk
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Luuk van Smoorenburg
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Barbara Eichenberger
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Arash Najafi
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Christoph Binkert
- Institute of Radiology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Raemistrasse 100, CH-8091, Zürich, Switzerland; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
18
|
Delattre BMA, Boudabbous S, Hansen C, Neroladaki A, Hachulla AL, Vargas MI. Compressed sensing MRI of different organs: ready for clinical daily practice? Eur Radiol 2019; 30:308-319. [PMID: 31264014 DOI: 10.1007/s00330-019-06319-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS • Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.
Collapse
Affiliation(s)
| | - Sana Boudabbous
- Division of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Catrina Hansen
- Division of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Angeliki Neroladaki
- Division of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Anne-Lise Hachulla
- Division of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Geneva University Hospitals , Geneva, Switzerland
| |
Collapse
|