1
|
Tao W, Zhang J, Meng X, Han X, Wang Q, Lin Y, Cheng L, Liu M, Da D, Zhang H, Fan J, Zhang L, Liu S, Li S, Gao F, Ren Y. Development and clinical evaluation of [ 68Ga]Ga-NODAGA-ADAPT6 as a novel HER2-targeted PET radiotracer for breast cancer imaging and treatment monitoring. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07286-z. [PMID: 40257612 DOI: 10.1007/s00259-025-07286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Accurate assessment of human epidermal growth factor receptor type 2 (HER2) expression is crucial for diagnosis, treatment planning, and monitoring of breast cancer patients. A 68Ga-labeled tracer based on the albumin-binding domain-derived affinity protein 6 (ADAPT6) was developed to evaluate HER2 expression in breast cancer. METHODS The gene encoding ADAPT6 was modified with N-terminal (GHEHEHEDANS) and C-terminal (GSSC) extensions to enhance its functionality. The precursor was synthesized, purified, and characterized, followed by radiolabeling with 68Ga to produce [68Ga]Ga-NODAGA-ADAPT6. In vivo metabolism and biodistribution studies were performed in HCC1954 (HER2-positive) and MDA-MB-468 (HER2-negative) tumor-bearing mice. Additionally, with ethical approval and informed consent, 22 breast cancer patients underwent [68Ga]Ga-NODAGA-ADAPT6 PET imaging to assess HER2 expression in primary and metastatic lesions. RESULTS The tracer was prepared with a radiochemical purity exceeding 99% and demonstrated high stability in vivo. Micro-PET/CT imaging revealed significant accumulation of the radiotracer in HCC1954 tumors, which was markedly reduced after HER2 blockade with trastuzumab. In contrast, MDA-MB-468 tumors showed minimal uptake. In the clinical study, [68Ga]Ga-NODAGA-ADAPT6 PET images displayed varying levels of radiotracer uptake in primary and metastatic lesions, which correlated well with the HER2 expression status determined by pathological analysis. CONCLUSION [68Ga]Ga-NODAGA-ADAPT6 exhibited excellent pharmacokinetic properties and high specificity for HER2-expressing lesions in PET imaging. These findings highlight its potential as a promising tool for distinguishing different levels of HER2 expression in breast cancer, aiding in personalized treatment strategies.
Collapse
Affiliation(s)
- Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Jinglin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Meng
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China
| | - Xuedong Han
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Qiuhu Wang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Minmin Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Dongzhu Da
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Huai Zhang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Junfu Fan
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Shuangyue Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Shuo Li
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yi Ren
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China.
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
2
|
Castorina L, Comis AD, Prestifilippo A, Quartuccio N, Panareo S, Filippi L, Castorina S, Giuffrida D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. J Clin Med 2023; 13:154. [PMID: 38202160 PMCID: PMC10779934 DOI: 10.3390/jcm13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from not only a dimensional perspective but also from a metabolic point of view. In particular, the use of [18F]FDG PET allowed early confirmation of the efficacy or failure of therapy. The purpose of this review was to assess the literature concerning the response to various therapies for different subtypes of breast cancer through PET. We start by summarizing studies that investigate the validation of PET/CT for the assessment of the response to therapy in breast cancer; then, we present studies that compare PET imaging (including PET devices dedicated to the breast) with CT and MRI, focusing on the identification of the most useful parameters obtainable from PET/CT. We also focus on novel non-FDG radiotracers, as they allow for the acquisition of information on specific aspects of the new therapies.
Collapse
Affiliation(s)
- Luigi Castorina
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Alessio Danilo Comis
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Angela Prestifilippo
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Serena Castorina
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
| | - Dario Giuffrida
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| |
Collapse
|
3
|
Cao X, Muller KE, Chamberlin MD, Gui J, Kaufman PA, Schwartz GN, diFlorio-Alexander RM, Pogue BW, Paulsen KD, Jiang S. Near-Infrared Spectral Tomography for Predicting Residual Cancer Burden during Early-Stage Neoadjuvant Chemotherapy for Breast Cancer. Clin Cancer Res 2023; 29:4822-4829. [PMID: 37733788 DOI: 10.1158/1078-0432.ccr-23-1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE The aim of this study is to investigate whether near-infrared spectral tomography (NIRST) might serve as a reliable prognostic tool to predict residual cancer burden (RCB) in patients with breast cancer undergoing neoadjuvant chemotherapy (NAC) based upon early treatment response measurements. EXPERIMENTAL DESIGN A total of thirty-five patients with breast cancer receiving NAC were included in this study. NIRST imaging was performed at multiple time points, including: before treatment, at end of the first cycle, at the mid-point, and post-NAC treatments. From reconstructed NIRST images, average values of total hemoglobin (HbT) were obtained for both the tumor region and contralateral breast at each time point. RCB scores/classes were assessed by a pathologist using histologic slides of the surgical specimen obtained after completing NAC. Logistic regression of the normalized early percentage change of HbT in the tumor region (ΔHbT%) was used to predict RCB and determine its significance as an indicator for differentiating cases within each RCB class. RESULTS The ΔHbT% at the end of the first cycle, as compared with pretreatment levels, showed excellent prognostic capability in differentiating RCB-0 from RCB-I/II/III or RCB-II from RCB-0/I/III (P < 0.001). Corresponding area under the curve (AUC) values for these comparisons were 0.97 and 0.94, and accuracy values were 0.90 and 0.83, respectively. CONCLUSIONS NIRST holds promise as a potential clinical tool that can be seamlessly integrated into existing clinical workflow within the infusion suite. By providing early assessment of RCB, NIRST has potential to improve breast cancer patient management strategies.
Collapse
Affiliation(s)
- Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - Jiang Gui
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
4
|
Groheux D, Ulaner GA, Hindie E. Breast cancer: treatment response assessment with FDG-PET/CT in the neoadjuvant and in the metastatic setting. Clin Transl Imaging 2023; 11:439-452. [DOI: 10.1007/s40336-023-00584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 01/03/2025]
|
5
|
van Geel JJL, de Vries EFJ, van Kruchten M, Hospers GAP, Glaudemans AWJM, Schröder CP. Molecular imaging as biomarker for treatment response and outcome in breast cancer. Ther Adv Med Oncol 2023; 15:17588359231170738. [PMID: 37223262 PMCID: PMC10201167 DOI: 10.1177/17588359231170738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Molecular imaging, such as positron emission tomography (PET), is increasingly used as biomarker to predict and assess treatment response in breast cancer. The number of biomarkers is expanding with specific tracers for tumour characteristics throughout the body and this information can be used to aid the decision-making process. These measurements include metabolic activity using [18F]fluorodeoxyglucose PET ([18F]FDG-PET), oestrogen receptor (ER) expression using 16α-[18F]Fluoro-17β-oestradiol ([18F]FES)-PET and human epidermal growth factor receptor 2 (HER2) expression using PET with radiolabelled trastuzumab (HER2-PET). In early breast cancer, baseline [18F]FDG-PET is frequently used for staging, but limited subtype-specific data reduce its usefulness as biomarker for treatment response or outcome. Early metabolic change on serial [18F]FDG-PET is increasingly used in the neo-adjuvant setting as dynamic biomarker to predict pathological complete response to systemic therapy, potentially allowing de-intensification or step-up intensification of treatment. In the metastatic setting, baseline [18F]FDG-PET and [18F]FES-PET can be used as biomarker to predict treatment response, in triple-negative and ER-positive breast cancer, respectively. Metabolic progression on repeated [18F]FDG-PET appears to precede progressive disease on standard evaluation imaging; however, subtype-specific studies are limited and more prospective data are needed before implementation in clinical practice. Even though (repeated) [18F]FDG-PET, [18F]FES-PET and HER2-PEt all show promising results as biomarkers to predict therapy response and outcome, for eventual integration into clinical practice, future studies will have to clarify at what timepoint this integration has to optimally take place.
Collapse
Affiliation(s)
- Jasper J. L. van Geel
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular
Imaging, University Medical Center Groningen, University of Groningen,
Groningen, The Netherlands
| | - Michel van Kruchten
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
| | - Geke A. P. Hospers
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular
Imaging, University Medical Center Groningen, University of Groningen,
Groningen, The Netherlands
| | - Carolina P. Schröder
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
- Department of Medical Oncology, Netherlands
Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
6
|
Adham SA, Szewczuk MR, Mraiche F, Petricoin E. Editorial: Recent advancements in neoadjuvant chemotherapy for specific breast cancer subtypes. Front Oncol 2022; 12:1100427. [PMID: 36582793 PMCID: PMC9793895 DOI: 10.3389/fonc.2022.1100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sirin A. Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman,*Correspondence: Sirin A. Adham, ;
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Emanuel Petricoin
- Institute for Biomedical Innovation, George Mason University, Manassas, VA, United States
| |
Collapse
|
7
|
Liu F, Li G, Lin L. A novel method for selecting the set optimal wavelength combination in multi-spectral transmission image. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120080. [PMID: 34147734 DOI: 10.1016/j.saa.2021.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In the process of detecting heterogeneity in breast tissue based on multi-spectral transmission imaging, the detection accuracy will be affected due to the high redundancy degree of information between bands. In order to select the reasonable wavelength combination, this paper uses various nonlinear transformations to convert the multi-spectral images into spectral data for the first time, so as to select the set optimal wavelength combination based on the successive projections algorithm (SPA). Firstly, we design the collection experiment of 4-wavelength multi-spectral image. And then, K-SVD dictionary learning method, texture extraction method and gray correlation analysis method are used to obtain the feature spectral information. Finally, the set optimal wavelength combination is selected based on SPA. The experimental results show that random forest (RF) classification model and Faster-RCNN recognition models effectively verify that the combination of wavelengths 1,2,4 selected has the highest accuracy in the heterogeneous detection. In conclusion, this paper uses modulation-frame accumulation technique to improve the quality of multi-spectral transmission images. And based on the RF and Faster-RCNN models, the effectiveness of SPA-based optimal wavelength combination method proposed is verified, which will provide a new idea of feature wavelength selection for screening early breast masses through multi-spectral transmission imaging.
Collapse
Affiliation(s)
- Fulong Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Gang Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Ling Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China.
| |
Collapse
|