1
|
Khil EK, Cha JG, Kim SJ, Yoon YS. Quantitative T2 Mapping Analysis With MRI of Talar Cartilage in Ankle Trauma: A Study Based on Lauge-Hansen Classification and Anatomical Locations. Korean J Radiol 2025; 26:435-445. [PMID: 40307198 PMCID: PMC12055265 DOI: 10.3348/kjr.2024.0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE This study aimed to quantitatively assess abnormalities in the talar dome cartilage using MRI T2 mapping, with additional analyses based on the Lauge-Hansen (LH) classification and anatomical locations. MATERIALS AND METHODS This retrospective study analyzed 78 patients who underwent ankle MRI with T2 mapping for acute ankle trauma between January 2021 and October 2022. Patients were classified into the supination (S) and pronation (P) groups based on the LH classification, and then divided into subgroups based on posterior malleolus (PM) involvement. The T2 values for the talar cartilage were quantitatively measured in six anatomical regions defined by the combination of medial vs. lateral and anterior vs. central vs. posterior. The T2 mapping values in each region of the talus were compared between the S and P groups and between the PM and non-PM injury groups using t-tests. The T2 values were also compared between the medial and lateral sides within each group. RESULTS Among the 78 patients (mean age, 38.62 ± 14.82 years; 47 male), 53 and 25 were in the S and P groups, respectively, and 53 patients showed PM involvement. In comparison with the P group, the S group exhibited higher T2 values in the medial portion (61.27 ± 8.30 vs. 54.03 ± 6.96; P < 0.001) and lower T2 values in the lateral talus (54.95 ± 8.47 vs. 64.15 ± 7.31; P < 0.001). The PM injury group showed higher T2 values in the posterior region than the non-PM injury group (P ≤ 0.011). Within the PM injury group, T2 values were higher in the anteromedial and posterolateral regions than on the opposite sides (P = 0.037 and 0.011, respectively). CONCLUSION MRI T2 values demonstrated significant regional variations in the talar dome cartilage in acute ankle trauma, and the T2 values may reflect different ankle trauma mechanisms and PM involvement. Thus, T2 mapping can facilitate evaluation of talar cartilage alterations.
Collapse
Affiliation(s)
- Eun Kyung Khil
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
- Department of Radiology, Graduate School, Soonchunhyang University College of Medicine, Asan, Republic of Korea
- Department of Radiology, Fastbone Orthopedic Hospital, Hwaseong, Republic of Korea
| | - Jang Gyu Cha
- Department of Radiology, Graduate School, Soonchunhyang University College of Medicine, Asan, Republic of Korea
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.
| | - Sung Jae Kim
- Department of Orthopedic Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Foot and Ankle Division, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Yu Sung Yoon
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
2
|
Cao G, Gao S, Xiong B. Application of quantitative T1, T2 and T2* mapping magnetic resonance imaging in cartilage degeneration of the shoulder joint. Sci Rep 2023; 13:4558. [PMID: 36941288 PMCID: PMC10027866 DOI: 10.1038/s41598-023-31644-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
To investigate and compare the values of 3.0 T MRI T1, T2 and T2* mapping quantification techniques in evaluating cartilage degeneration of the shoulder joint. This study included 123 shoulder joints of 119 patients, which were scanned in 3.0 T MRI with axial Fat Suppression Proton Density Weighted Image (FS-PDWI), sagittal fat suppression T2 Weighted Image (FS-T2WI), coronal T1Weighted Image (T1WI), FS-PDWI, cartilage-specific T1, T2 and T2* mapping sequences. Basing on MRI images, the shoulder cartilage was classified into grades 0 1, 2, 3 and 4 according to the International Cartilage Regeneration & Joint Preservation Society (ICRS). The grading of shoulder cartilage was based on MRI images with ICRS as reference, and did not involve arthroscopy or histology.The T1, T2 and T2* relaxation values in the superior, middle and inferior bands of shoulder articular cartilage were measured at all grades, and the differences in various indicators between groups were analyzed and compared using a single-factor ANOVA test. The correlation between T1, T2 and T2* relaxation values and MRI-based grading was analyzed by SPSS software. There were 46 shoulder joints with MRI-based grade 0 in healthy control group (n = 46), while 49 and 28 shoulder joints with grade 1-2 (mild degeneration subgroup) and grade 3-4 (severe degeneration subgroup) in patient group (n = 73), accounting for 63.6% and 36.4%, respectively. The T1, T2 and T2* relaxation values of the superior, middle and inferior bands of shoulder articular cartilage were significantly and positively correlated with the MRI-based grading (P < 0.01). MRI-basedgrading of shoulder cartilage was markedly associated with age (r = 0.766, P < 0.01). With the aggravation of cartilage degeneration, T1, T2 and T2* relaxation values showed an upward trend (all P < 0.01), and T1, T2 and T2* mapping could distinguish cartilage degeneration at all levels (all P < 0.01). The T1, T2 and T2* relaxation values were significantly different between normal group and mild degeneration subgroup, normal group and severe degeneration subgroup, mild degeneration subgroup and severe degeneration subgroup (all P < 0.05). Quantitative T1, T2 and T2* mapping can quantify the degree of shoulder cartilage degeneration. All these MRI mapping quantification techniques can be used as critical supplementary sequences to assess shoulder cartilage degeneration, among which T2 mapping has the highest value.
Collapse
Affiliation(s)
- Guijuan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, 430022, Wuhan, Hubei, China
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shubo Gao
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, 430022, Wuhan, Hubei, China.
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Luo S, Cao Y, Hu P, Wang N, Wan Y. Quantitative evaluation of ankle cartilage in asymptomatic adolescent football players after season by T2-mapping magnetic resonance imaging. Biomed Eng Online 2021; 20:130. [PMID: 34961538 PMCID: PMC8713405 DOI: 10.1186/s12938-021-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ankle sprain affects the structure and function of ankle cartilage. However, it is not clear whether the daily training and competition affect the ankle cartilage without acute injury. Changes in ankle cartilage without injury may influence future strategies to protect ankle function in athletes. This study aimed to evaluate whether the composition of ankle cartilage significantly altered in asymptomatic adolescent football players after a whole season of training and competition using T2-mapping magnetic resonance imaging (MRI). MATERIALS AND METHODS 12 local club's U17 asymptomatic adolescent football players without abnormalities in routine MRI were included. Routine and T2-mapping MRI were performed to measure the cartilage thickness of tibiotalar joint (TT) and posterior subtalar joint (pST) and T2 values in pre- and post-seasons. All of them took the right side as dominant foot. RESULTS In the pre- and post-seasons, cartilage T2 values in TT (talus side) and pST (calcaneus side) were higher than that of TT (tibial side) and pST (talus side) (all p < 0.05), which was caused by magic angle effect and gravity load. No statistically significant differences in thickness after season in the other cartilages of ankle were found compared with that before the season (all p > 0.05). However, T2 values of TT (tibial side and talus side) cartilage in the dominant foot were significantly reduced after season (p = 0.008; p = 0.034). These results indicate that the microstructure of articular cartilage changes in the joints with greater mobility, although no trauma occurred and the gross morphology of cartilage did not change. CONCLUSION Changes in the T2 values of tibiotalar joint cartilage in the dominant foot of healthy young athletes before and after the season suggest that the microstructure of cartilage had changed during sports even without injury. This finding suggests that the dominant ankle joint should be protected during football to delay degeneration of the articular cartilage.
Collapse
Affiliation(s)
- Sipin Luo
- Department of Radiology, Tianjin Hospital, Tianjin University, #406 Jiefangnan Rd., HeXi district, Tianjin, 300299, People's Republic of China
| | - Yi Cao
- Department of Radiology, Tianjin Hospital, Tianjin University, #406 Jiefangnan Rd., HeXi district, Tianjin, 300299, People's Republic of China
| | - Peng Hu
- Department of Radiology, Tianjin Hospital, Tianjin University, #406 Jiefangnan Rd., HeXi district, Tianjin, 300299, People's Republic of China
| | - Nan Wang
- Department of Radiology, Tianjin Hospital, Tianjin University, #406 Jiefangnan Rd., HeXi district, Tianjin, 300299, People's Republic of China
| | - Yeda Wan
- Department of Radiology, Tianjin Hospital, Tianjin University, #406 Jiefangnan Rd., HeXi district, Tianjin, 300299, People's Republic of China.
| |
Collapse
|
4
|
Lockard CA, Stake IK, Brady AW, DeClercq MG, Tanghe KK, Douglass BW, Nott E, Ho CP, Clanton TO. Accuracy of MRI-Based Talar Cartilage Thickness Measurement and Talus Bone and Cartilage Modeling: Comparison with Ground-Truth Laser Scan Measurements. Cartilage 2021; 13:674S-684S. [PMID: 33269605 PMCID: PMC8808841 DOI: 10.1177/1947603520976774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The purpose of this work was to compare measurements of talar cartilage thickness and cartilage and bone surface geometry from clinically feasible magnetic resonance imaging (MRI) against high-accuracy laser scan models. Measurement of talar bone and cartilage geometry from MRI would provide useful information for evaluating cartilage changes, selecting osteochondral graft sources or creating patient-specific joint models. DESIGN Three-dimensional (3D) bone and cartilage models of 7 cadaver tali were created using (1) manual segmentation of high-resolution volumetric sequence 3T MR images and (2) laser scans. Talar cartilage thickness was compared between the laser scan- and MRI-based models for the dorsal, medial, and lateral surfaces. The laser scan- and MRI-based cartilage and bone surface models were compared using model-to-model distance. RESULTS Average cartilage thickness within the dorsal, medial, and lateral surfaces were 0.89 to 1.05 mm measured with laser scanning, and 1.10 to 1.22 mm measured with MRI. MRI-based thickness was 0.16 to 0.32 mm higher on average in each region. The average absolute surface-to-surface differences between laser scan- and MRI-based bone and cartilage models ranged from 0.16 to 0.22 mm for bone (MRI bone models smaller than laser scan models) and 0.35 to 0.38 mm for cartilage (MRI bone models larger than laser scan models). CONCLUSIONS This study demonstrated that cartilage and bone 3D modeling and measurement of average cartilage thickness on the dorsal, medial, and lateral talar surfaces using MRI were feasible and provided similar model geometry and thickness values to ground-truth laser scan-based measurements.
Collapse
Affiliation(s)
| | - Ingrid K. Stake
- Steadman Philippon Research Institute,
Vail, CO, USA
- Department of Orthopaedic Surgery,
Ostfold Hospital Trust, Grålum, Norway
| | - Alex W. Brady
- Steadman Philippon Research Institute,
Vail, CO, USA
| | | | | | | | | | - Charles P. Ho
- Steadman Philippon Research Institute,
Vail, CO, USA
| | | |
Collapse
|
5
|
Rizzo G, Cristoforetti A, Marinetti A, Rigoni M, Puddu L, Cortese F, Nollo G, Della Sala SW, Tessarolo F. Quantitative MRI T2 Mapping Is Able to Assess Tissue Quality After Reparative and Regenerative Treatments of Osteochondral Lesions of the Talus. J Magn Reson Imaging 2021; 54:1572-1582. [PMID: 34047400 PMCID: PMC8596766 DOI: 10.1002/jmri.27754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Quantitative MRI has potential for tissue characterization after reparative and regenerative surgical treatment of osteochondral lesions of the talus (OCLTs). However available data is inconclusive and quantitative sequences can be difficult to implement in real-time clinical application. PURPOSE To assess the potential of T2 mapping in discriminating articular tissue characteristics after reparative and regenerative surgery of OCLTs in real-world clinical settings. STUDY TYPE Observational and prospective cohort study. POPULATION 15 OCLT patients who had received either reparative treatment with arthroscopic microfracture surgery (MFS) for a grade I lesion or regenerative treatment with bone marrow derived cell transplantation (BMDCT) for a grade II lesion. FIELD STRENGTH/SEQUENCE 1.5 T, proton density weighted TSE, T2-weighted true fast imaging with steady-state-free precession and multi-echo T2 mapping sequences. ASSESSMENT Patients were evaluated at a minimum postoperative follow-up of 24 months. T2 maps of the ankle were generated and the distribution of T2 values was analyzed in manually identified volumes of interest (VOIs) for both treated lesions (TX) and healthy cartilage (CTRL). The amount of fibrocartilage, hyaline-like and remodeling tissue in TX VOIs was obtained, based on T2 thresholds from CTRL VOIs. STATISTICAL TESTS Fisher's exact test for categorical data, nonparametric Mann-Whitney U test for continuous data. The statistical significance level was P < 0.05. RESULTS From CTRL VOI analysis, T2 < 25 msec, 25 msec ≤ T2 ≤ 45 msec, and T2 > 45 msec were considered as representative for fibrocartilage, hyaline-like and remodeling tissue, respectively. Tissue composition of the two treatment groups was different, with significantly more fibrocartilage (+28%) and less hyaline-like tissue (-15%) in MFS than in BMDCT treated lesions. No difference in healthy tissue composition was found between the two groups (P = 0.75). DATA CONCLUSIONS T2 mapping of surgically treated OCLTs can provide quantitative information about the type and amount of newly formed tissue at the lesion site, thereby facilitating surgical follow-up in a real-word clinical setting. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Giulio Rizzo
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Alessandro Cristoforetti
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Alessandro Marinetti
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Marta Rigoni
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Leonardo Puddu
- Division of Orthopaedics and Traumatology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Fabrizio Cortese
- Division of Orthopaedics and Traumatology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Sabino W Della Sala
- Division of Diagnostic Radiology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|
6
|
Horiuchi S, Yu HJ, Luk A, Rudd A, Ton J, Kuoy E, Russell JA, Sharp K, Yoshioka H. T1rho and T2 mapping of ankle cartilage of female and male ballet dancers. Acta Radiol 2020; 61:1365-1376. [PMID: 32028774 DOI: 10.1177/0284185120902381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since ballet dancers begin their training before skeletal maturity, accurate and non-invasive identification of cartilage diseases is clinically important. Angle-dependent analysis of T1rho and T2 sequences can be useful for quantification of the composition of cartilage. PURPOSE To investigate the angle-dependent T1rho and T2 profiles of ankle cartilage in non-dancers and dancers. MATERIAL AND METHODS Ten female non-dancers, ten female dancers, and 9 male dancers were evaluated using T1rho and T2 mapping sequences. Manual segmentation of talar and tibial cartilage on these images was performed by two radiologists. Inter- and intra-rater reliabilities were calculated using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. Mean thickness and volume of cartilage were estimated. Angle-dependent relaxation time profiles of talar and tibial cartilage were created. RESULTS ICCs of the number of segmented pixels were poor to excellent. Bland-Altman plots indicated that differences were associated with segment sizes. Segmented cartilage on T1rho demonstrated larger thickness and volume than those on T2 in all populations. Male dancers showed larger cartilage thickness and volume than female dancers and non-dancers. Each cartilage demonstrated angular-dependent T1rho and T2 profiles. Minimal T1rho and T2 values were observed at approximately 180°-200°; higher values were seen at the angle closer to the magic angle. Minimal T2 value of talar cartilage of dancers was larger than that of non-dancers. CONCLUSION In this small cohort study, regional and sex variations of ankle cartilage T1rho and T2 values in dancers and non-dancers were demonstrated using an angle-dependent approach.
Collapse
Affiliation(s)
- Saya Horiuchi
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - Hon J Yu
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - Alex Luk
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - Adam Rudd
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - Jimmy Ton
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - Edward Kuoy
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - Jeffrey A Russell
- Science and Health in Artistic Performance, Ohio University, Athens, OH, USA
| | - Kelli Sharp
- Department of Dance, The Claire Trevor School of the Arts, University of California, Irvine, CA, USA
| | - Hiroshi Yoshioka
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| |
Collapse
|