1
|
Yang X, Li J, Sun H, Chen J, Xie J, Peng Y, Shang T, Pan T. Radiomics Integration of Mammography and DCE-MRI for Predicting Molecular Subtypes in Breast Cancer Patients. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:187-200. [PMID: 39990966 PMCID: PMC11846489 DOI: 10.2147/bctt.s488200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
Background Accurate identification of the molecular subtypes of breast cancer is essential for effective treatment selection and prognosis prediction. Aim This study aimed to evaluate the diagnostic performance of a radiomics model, which integrates breast mammography and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the molecular subtypes of breast cancer. Methods We retrospectively included 462 female patients with pathologically confirmed breast cancer, including 53 cases of triple-negative, 94 cases of HER2 overexpression, 95 cases of luminal A, and 215 cases of luminal B breast cancer. Radiomics analysis was performed using FAE software, wherein the radiomic features were examined about the hormone receptor status. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC) and accuracy. Results In multivariate analysis, radiomic features were the only independent predictive factors for molecular subtypes. The model that incorporates multimodal fusion features from breast mammography and DCE-MRI images exhibited superior overall performance compared to using either modality independently. The AUC values (or accuracies) for six pairings were as follows: 0.648 (0.627) for luminal A vs luminal B, 0.819 (0.793) for luminal A vs HER2 overexpression, 0.725 (0.696) for luminal A vs triple-negative subtype, 0.644 (0.560) for luminal B vs HER2 overexpression, 0.625 (0.636) for luminal B vs triple-negative subtype, and 0.598 (0.500) for triple-negative subtype vs HER2 overexpression. Conclusion The radionics model utilizing multimodal fusion features from breast mammography combined with DCE-MRI images showed high performance in distinguishing molecular subtypes of breast cancer. It is of significance to accurately predict prognosis and determine treatment strategy of breast cancer by molecular classification.
Collapse
Affiliation(s)
- Xianwei Yang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Jing Li
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Hang Sun
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, 110159, People’s Republic of China
| | - Jing Chen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Jin Xie
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Yonghui Peng
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Tao Shang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Tongyong Pan
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| |
Collapse
|
2
|
Laddaga FE, Telegrafo M, Garzillo C, Fiorentino A, Sardaro A, Martinotti S, Moschetta M, Gaudio F. Long-Term Breast Cancer Risk in Hodgkin Lymphoma Survivors: Evaluating Background Parenchymal Enhancement and Radiotherapy-Induced Toxicity. Cancers (Basel) 2024; 16:4091. [PMID: 39682278 DOI: 10.3390/cancers16234091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Hodgkin lymphoma (HL) treatment has dramatically improved, with high survival rates in early stages. However, long-term survivors face an increased risk of secondary cancers, particularly breast cancer (BC), which emerge as a leading cause of mortality decades after therapy. Background/Objectives: This study explores the risk of BC and the toxic effects of radiation therapy (RT) in long-term HL survivors compared to age-matched high-risk women, including BRCA1 and BRCA2 mutation carriers. A prospective study was conducted on 62 women who had undergone chemotherapy and involved-field RT for HL, with MRI used to assess breast tissue changes. This study's primary endpoint was to analyze BC incidence in HL survivors, while secondary objectives focused on the analysis of background parenchymal enhancement (BPE) in irradiated areas. Results: The findings revealed a 5% incidence of BC in HL survivors, with 50% showing moderate or marked BPE, similar to that observed in high-risk BC controls. No significant differences in BPE distribution were found between the two groups. Conclusions: The study highlights the long-term risk of BC in HL survivors and suggests that advanced RT techniques and targeted therapies may help reduce the incidence of secondary tumors. Future research should focus on understanding the genetic and biological mechanisms behind treatment-induced cancers.
Collapse
Affiliation(s)
| | - Michele Telegrafo
- Interdisciplinary Department of Medicine (DIM), Section of Radiology and Radiation Oncology, University of Bari, 70124 Bari, Italy
| | - Carmela Garzillo
- Interdisciplinary Department of Medicine (DIM), Section of Radiology and Radiation Oncology, University of Bari, 70124 Bari, Italy
| | - Alba Fiorentino
- Department of Medicine and Surgery, LUM University "Giuseppe Degennaro", Casamassima, 70010 Bari, Italy
| | - Angela Sardaro
- Interdisciplinary Department of Medicine (DIM), Section of Radiology and Radiation Oncology, University of Bari, 70124 Bari, Italy
| | - Stefano Martinotti
- Department of Medicine and Surgery, LUM University "Giuseppe Degennaro", Casamassima, 70010 Bari, Italy
| | - Marco Moschetta
- Interdisciplinary Department of Medicine (DIM), Section of Radiology and Radiation Oncology, University of Bari, 70124 Bari, Italy
| | - Francesco Gaudio
- Department of Medicine and Surgery, LUM University "Giuseppe Degennaro", Casamassima, 70010 Bari, Italy
| |
Collapse
|
3
|
Nowakowska S, Borkowski K, Ruppert C, Hejduk P, Ciritsis A, Landsmann A, Marcon M, Berger N, Boss A, Rossi C. Explainable Precision Medicine in Breast MRI: A Combined Radiomics and Deep Learning Approach for the Classification of Contrast Agent Uptake. Bioengineering (Basel) 2024; 11:556. [PMID: 38927793 PMCID: PMC11200390 DOI: 10.3390/bioengineering11060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
In DCE-MRI, the degree of contrast uptake in normal fibroglandular tissue, i.e., background parenchymal enhancement (BPE), is a crucial biomarker linked to breast cancer risk and treatment outcome. In accordance with the Breast Imaging Reporting & Data System (BI-RADS), it should be visually classified into four classes. The susceptibility of such an assessment to inter-reader variability highlights the urgent need for a standardized classification algorithm. In this retrospective study, the first post-contrast subtraction images for 27 healthy female subjects were included. The BPE was classified slice-wise by two expert radiologists. The extraction of radiomic features from segmented BPE was followed by dataset splitting and dimensionality reduction. The latent representations were then utilized as inputs to a deep neural network classifying BPE into BI-RADS classes. The network's predictions were elucidated at the radiomic feature level with Shapley values. The deep neural network achieved a BPE classification accuracy of 84 ± 2% (p-value < 0.00001). Most of the misclassifications involved adjacent classes. Different radiomic features were decisive for the prediction of each BPE class underlying the complexity of the decision boundaries. A highly precise and explainable pipeline for BPE classification was achieved without user- or algorithm-dependent radiomic feature selection.
Collapse
Affiliation(s)
- Sylwia Nowakowska
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
| | | | - Carlotta Ruppert
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
- b-rayZ AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Patryk Hejduk
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
| | - Alexander Ciritsis
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
- b-rayZ AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Anna Landsmann
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
| | - Magda Marcon
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
| | - Nicole Berger
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
| | - Andreas Boss
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
| | - Cristina Rossi
- Diagnostic and Interventional Radiology, University Hospital Zürich, University Zürich, Rämistrasse 100, 8091 Zürich, Switzerland (C.R.)
- b-rayZ AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| |
Collapse
|
4
|
Arefan D, Zuley ML, Berg WA, Yang L, Sumkin JH, Wu S. Assessment of Background Parenchymal Enhancement at Dynamic Contrast-enhanced MRI in Predicting Breast Cancer Recurrence Risk. Radiology 2024; 310:e230269. [PMID: 38259203 PMCID: PMC10831474 DOI: 10.1148/radiol.230269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Background Background parenchymal enhancement (BPE) at dynamic contrast-enhanced (DCE) MRI of cancer-free breasts increases the risk of developing breast cancer; implications of quantitative BPE in ipsilateral breasts with breast cancer are largely unexplored. Purpose To determine whether quantitative BPE measurements in one or both breasts could be used to predict recurrence risk in women with breast cancer, using the Oncotype DX recurrence score as the reference standard. Materials and Methods This HIPAA-compliant retrospective single-institution study included women diagnosed with breast cancer between January 2007 and January 2012 (development set) and between January 2012 and January 2017 (internal test set). Quantitative BPE was automatically computed using an in-house-developed computer algorithm in both breasts. Univariable logistic regression was used to examine the association of BPE with Oncotype DX recurrence score binarized into high-risk (recurrence score >25) and low- or intermediate-risk (recurrence score ≤25) categories. Models including BPE measures were assessed for their ability to distinguish patients with high risk versus those with low or intermediate risk and the actual recurrence outcome. Results The development set included 127 women (mean age, 58 years ± 10.2 [SD]; 33 with high risk and 94 with low or intermediate risk) with an actual local or distant recurrence rate of 15.7% (20 of 127) at a minimum 10 years of follow-up. The test set included 60 women (mean age, 57.8 years ± 11.6; 16 with high risk and 44 with low or intermediate risk). BPE measurements quantified in both breasts were associated with increased odds of a high-risk Oncotype DX recurrence score (odds ratio range, 1.27-1.66 [95% CI: 1.02, 2.56]; P < .001 to P = .04). Measures of BPE combined with tumor radiomics helped distinguish patients with a high-risk Oncotype DX recurrence score from those with a low- or intermediate-risk score, with an area under the receiver operating characteristic curve of 0.94 in the development set and 0.79 in the test set. For the combined models, the negative predictive values were 0.97 and 0.93 in predicting actual distant recurrence and local recurrence, respectively. Conclusion Ipsilateral and contralateral DCE MRI measures of BPE quantified in patients with breast cancer can help distinguish patients with high recurrence risk from those with low or intermediate recurrence risk, similar to Oncotype DX recurrence score. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zhou and Rahbar in this issue.
Collapse
Affiliation(s)
- Dooman Arefan
- From the Department of Radiology, University of Pittsburgh School of
Medicine, 3240 Craft Pl, Room 322, Pittsburgh, PA 15213 (D.A., M.L.Z., W.A.B.,
L.Y., J.H.S., S.W.); Department of Radiology, Magee-Womens Hospital, University
of Pittsburgh Medical Center, Pittsburgh, PA, 15213 (M.L.Z., W.A.B., J.H.S.);
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and
Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
(L.Y.); and Department of Biomedical Informatics (S.W.), Department of
Bioengineering (S.W.), and Intelligent Systems Program (S.W.), University of
Pittsburgh, Pittsburgh, Pa
| | - Margarita L. Zuley
- From the Department of Radiology, University of Pittsburgh School of
Medicine, 3240 Craft Pl, Room 322, Pittsburgh, PA 15213 (D.A., M.L.Z., W.A.B.,
L.Y., J.H.S., S.W.); Department of Radiology, Magee-Womens Hospital, University
of Pittsburgh Medical Center, Pittsburgh, PA, 15213 (M.L.Z., W.A.B., J.H.S.);
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and
Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
(L.Y.); and Department of Biomedical Informatics (S.W.), Department of
Bioengineering (S.W.), and Intelligent Systems Program (S.W.), University of
Pittsburgh, Pittsburgh, Pa
| | - Wendie A. Berg
- From the Department of Radiology, University of Pittsburgh School of
Medicine, 3240 Craft Pl, Room 322, Pittsburgh, PA 15213 (D.A., M.L.Z., W.A.B.,
L.Y., J.H.S., S.W.); Department of Radiology, Magee-Womens Hospital, University
of Pittsburgh Medical Center, Pittsburgh, PA, 15213 (M.L.Z., W.A.B., J.H.S.);
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and
Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
(L.Y.); and Department of Biomedical Informatics (S.W.), Department of
Bioengineering (S.W.), and Intelligent Systems Program (S.W.), University of
Pittsburgh, Pittsburgh, Pa
| | - Lu Yang
- From the Department of Radiology, University of Pittsburgh School of
Medicine, 3240 Craft Pl, Room 322, Pittsburgh, PA 15213 (D.A., M.L.Z., W.A.B.,
L.Y., J.H.S., S.W.); Department of Radiology, Magee-Womens Hospital, University
of Pittsburgh Medical Center, Pittsburgh, PA, 15213 (M.L.Z., W.A.B., J.H.S.);
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and
Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
(L.Y.); and Department of Biomedical Informatics (S.W.), Department of
Bioengineering (S.W.), and Intelligent Systems Program (S.W.), University of
Pittsburgh, Pittsburgh, Pa
| | - Jules H. Sumkin
- From the Department of Radiology, University of Pittsburgh School of
Medicine, 3240 Craft Pl, Room 322, Pittsburgh, PA 15213 (D.A., M.L.Z., W.A.B.,
L.Y., J.H.S., S.W.); Department of Radiology, Magee-Womens Hospital, University
of Pittsburgh Medical Center, Pittsburgh, PA, 15213 (M.L.Z., W.A.B., J.H.S.);
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and
Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
(L.Y.); and Department of Biomedical Informatics (S.W.), Department of
Bioengineering (S.W.), and Intelligent Systems Program (S.W.), University of
Pittsburgh, Pittsburgh, Pa
| | - Shandong Wu
- From the Department of Radiology, University of Pittsburgh School of
Medicine, 3240 Craft Pl, Room 322, Pittsburgh, PA 15213 (D.A., M.L.Z., W.A.B.,
L.Y., J.H.S., S.W.); Department of Radiology, Magee-Womens Hospital, University
of Pittsburgh Medical Center, Pittsburgh, PA, 15213 (M.L.Z., W.A.B., J.H.S.);
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and
Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
(L.Y.); and Department of Biomedical Informatics (S.W.), Department of
Bioengineering (S.W.), and Intelligent Systems Program (S.W.), University of
Pittsburgh, Pittsburgh, Pa
| |
Collapse
|
5
|
Corredor G, Bharadwaj S, Pathak T, Viswanathan VS, Toro P, Madabhushi A. A Review of AI-Based Radiomics and Computational Pathology Approaches in Triple-Negative Breast Cancer: Current Applications and Perspectives. Clin Breast Cancer 2023; 23:800-812. [PMID: 37380569 PMCID: PMC10733554 DOI: 10.1016/j.clbc.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Breast cancer is one of the most common and deadly cancers worldwide. Approximately, 20% of all breast cancers are characterized as triple negative (TNBC). TNBC typically is associated with a poorer prognosis relative to other breast cancer subtypes. Due to its aggressiveness and lack of response to hormonal therapy, conventional cytotoxic chemotherapy is the usual treatment; however, this treatment is not always effective, and an important percentage of patients develop recurrence. More recently, immunotherapy has started to be used on some populations with TNBC showing promising results. Unfortunately, immunotherapy is only applicable to a minority of patients and responses in metastatic TNBC have overall been modest in comparison to other cancer types. This situation evidences the need for developing effective biomarkers that help to stratify and personalize patient management. Thanks to recent advances in artificial intelligence (AI), there has been an increasing interest in its use for medical applications aiming at supporting clinical decision making. Several works have used AI in combination with diagnostic medical imaging, more specifically radiology and digitized histopathological tissue samples, aiming to extract disease-specific information that is difficult to quantify by the human eye. These works have demonstrated that analysis of such images in the context of TNBC has great potential for (1) risk-stratifying patients to identify those patients who are more likely to experience disease recurrence or die from the disease and (2) predicting pathologic complete response. In this manuscript, we present an overview on AI and its integration with radiology and histopathological images for developing prognostic and predictive approaches for TNBC. We present state of the art approaches in the literature and discuss the opportunities and challenges with developing AI algorithms regarding further development and clinical deployment, including identifying those patients who may benefit from certain treatments (e.g., adjuvant chemotherapy) from those who may not and thereby should be directed toward other therapies, discovering potential differences between populations, and identifying disease subtypes.
Collapse
Affiliation(s)
- Germán Corredor
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Satvika Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | - Tilak Pathak
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | - Vidya Sankar Viswanathan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | | | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA; Atlanta VA Medical Center, Atlanta, GA.
| |
Collapse
|
6
|
Bhatia M, Ahmed R, Nagarajakumar A, Alani A, Doddi S, Metafa A. Measurement of malignant spiculated mass lesions on mammogram: Do we include the length of the spicules? J Cancer Res Ther 2023; 19:1794-1796. [PMID: 38376280 DOI: 10.4103/jcrt.jcrt_2052_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/31/2021] [Indexed: 11/04/2022]
Abstract
AIM The aim of this study is to determine if the core size or size with spicules has a better correlation with the final histologic size of spiculated mass lesions. METHODS A retrospective study of 48-month duration from January 2014 to December 2017 of biopsy-proven invasive ductal carcinoma presenting as spiculated mass lesions on mammogram was conducted. RESULTS There were 195 patients in the study. The mean of the core size was 16.6 mm; when spicules were included the mean size was 27.4mm and final histologic size 21.1 mm. Using unpaired Student 't' test difference in the means was statistically significant (p<0.0001). Pearson number (R) core size versus final histologic size was 0.535 (P < 0.001) and for size with spicules versus final histologic size was 0.495 (P < 0.001). CONCLUSION Our study demonstrated that the core size has a stronger positive correlation to final histologic size and should be used preoperatively in decision-making about surgery.
Collapse
Affiliation(s)
- Mohit Bhatia
- Department of General Surgery, PRUH, Kings College and Hospital, London, Department of Breast Radiology, PRUH, King's College, Orpington, United Kingdom
| | - Rizwan Ahmed
- Department of General Surgery, PRUH, Kings College and Hospital, London, Department of Breast Radiology, PRUH, King's College, Orpington, United Kingdom
| | - Anupama Nagarajakumar
- Department of General Surgery, PRUH, Kings College and Hospital, London, Department of Breast Radiology, PRUH, King's College, Orpington, United Kingdom
| | - Azhar Alani
- Department of General Surgery, PRUH, Orpington, King's College, London
| | - Sudeendra Doddi
- Department of General Surgery, PRUH, Kings College and Hospital, London, Department of Breast Radiology, PRUH, King's College, Orpington, United Kingdom
| | - Anna Metafa
- Department of General Surgery, PRUH, Kings College and Hospital, London, Department of Breast Radiology, PRUH, King's College, Orpington, United Kingdom
| |
Collapse
|
7
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Multiparametric MRI Features of Breast Cancer Molecular Subtypes. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121716. [PMID: 36556918 PMCID: PMC9785392 DOI: 10.3390/medicina58121716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Breast cancer (BC) molecular subtypes have unique incidence, survival and response to therapy. There are five BC subtypes described by immunohistochemistry: luminal A, luminal B HER2 positive and HER2 negative, triple negative (TNBC) and HER2-enriched. Multiparametric breast MRI (magnetic resonance imaging) provides morphological and functional characteristics of breast tumours and is nowadays recommended in the preoperative setting. Aim: To evaluate the multiparametric MRI features (T2-WI, ADC values and DCE) of breast tumours along with breast density and background parenchymal enhancement (BPE) features among different BC molecular subtypes. Materials and Methods: This was a retrospective study which included 344 patients. All underwent multiparametric breast MRI (T2WI, ADC and DCE sequences) and features were extracted according to the latest BIRADS lexicon. The inter-reader agreement was assessed using the intraclass coefficient (ICC) between the ROI of ADC obtained from the two breast imagers (experienced and moderately experienced). Results: The study population was divided as follows: 89 (26%) with luminal A, 39 (11.5%) luminal B HER2 positive, 168 (48.5%) luminal B HER2 negative, 41 (12%) triple negative (TNBC) and 7 (2%) with HER2 enriched. Luminal A tumours were associated with special histology type, smallest tumour size and persistent kinetic curve (all p-values < 0.05). Luminal B HER2 negative tumours were associated with lowest ADC value (0.77 × 10−3 mm2/s2), which predicts the BC molecular subtype with an accuracy of 0.583. TNBC were associated with asymmetric and moderate/marked BPE, round/oval masses with circumscribed margins and rim enhancement (all p-values < 0.05). HER2 enriched BC were associated with the largest tumour size (mean 37.28 mm, p-value = 0.02). Conclusions: BC molecular subtypes can be associated with T2WI, ADC and DCE MRI features. ADC can help predict the luminal B HER2 negative cases.
Collapse
|
9
|
Kong QC, Tang WJ, Chen SY, Hu WK, Hu Y, Liang YS, Zhang QQ, Cheng ZX, Huang D, Yang J, Guo Y. Nomogram for the prediction of triple-negative breast cancer histological heterogeneity based on multiparameter MRI features: A preliminary study including metaplastic carcinoma and non- metaplastic carcinoma. Front Oncol 2022; 12:916988. [PMID: 36212484 PMCID: PMC9533710 DOI: 10.3389/fonc.2022.916988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Triple-negative breast cancer (TNBC) is a heterogeneous disease, and different histological subtypes of TNBC have different clinicopathological features and prognoses. Therefore, this study aimed to establish a nomogram model to predict the histological heterogeneity of TNBC: including Metaplastic Carcinoma (MC) and Non-Metaplastic Carcinoma (NMC). Methods We evaluated 117 patients who had pathologically confirmed TNBC between November 2016 and December 2020 and collected preoperative multiparameter MRI and clinicopathological data. The patients were randomly assigned to a training set and a validation set at a ratio of 3:1. Based on logistic regression analysis, we established a nomogram model to predict the histopathological subtype of TNBC. Nomogram performance was assessed with the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve. According to the follow-up information, disease-free survival (DFS) survival curve was estimated using the Kaplan-Meier product-limit method. Results Of the 117 TNBC patients, 29 patients had TNBC-MC (age range, 29–65 years; median age, 48.0 years), and 88 had TNBC-NMC (age range, 28–88 years; median age, 44.5 years). Multivariate logistic regression analysis demonstrated that lesion type (p = 0.001) and internal enhancement pattern (p = 0.001) were significantly predictive of TNBC subtypes in the training set. The nomogram incorporating these variables showed excellent discrimination power with an AUC of 0.849 (95% CI: 0.750−0.949) in the training set and 0.819 (95% CI: 0.693−0.946) in the validation set. Up to the cutoff date for this analysis, a total of 66 patients were enrolled in the prognostic analysis. Six of 14 TNBC-MC patients experienced recurrence, while 7 of 52 TNBC-NMC patients experienced recurrence. The DFS of the two subtypes was significantly different (p=0.035). Conclusions In conclusion, we developed a nomogram consisting of lesion type and internal enhancement pattern, which showed good discrimination ability in predicting TNBC-MC and TNBC-NMC.
Collapse
Affiliation(s)
- Qing-cong Kong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wen-jie Tang
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Si-yi Chen
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-ke Hu
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Hu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun-shi Liang
- Department of Pathology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiong-qiong Zhang
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zi-xuan Cheng
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Di Huang
- Department of Breast Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Di Huang, ; Jing Yang, ; Yuan Guo,
| | - Jing Yang
- Department of Pathology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Di Huang, ; Jing Yang, ; Yuan Guo,
| | - Yuan Guo
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Di Huang, ; Jing Yang, ; Yuan Guo,
| |
Collapse
|
10
|
Dołęga-Kozierowski B, Lis M, Marszalska-Jacak H, Koziej M, Celer M, Bandyk M, Kasprzak P, Szynglarewicz B, Matkowski R. Multimodality imaging in lobular breast cancer: Differences in mammography, ultrasound, and MRI in the assessment of local tumor extent and correlation with molecular characteristics. Front Oncol 2022; 12:855519. [PMID: 36072800 PMCID: PMC9441946 DOI: 10.3389/fonc.2022.855519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Invasive lobular breast cancer (ILC) is a diagnostic challenge due to the diversity of morphological features. The objective of the study was to investigate the presentation and local extent of ILC using various imaging techniques and to assess the correlation between imaging and molecular profile. Materials and methods We reviewed 162 consecutive patients with ILC found on vacuum-assisted biopsy, who underwent evaluation of the lesion morphology and extent using ultrasound (US), mammography (MMG), and magnetic resonance imaging (MRI). Radiographic features were compared with ILC intrinsic subtype based on the expression of Ki-67 and estrogen, progesterone, and HER2 receptors. Results A total of 113 mass lesions and 49 non-mass enhancements (NMEs) were found in MRI. Masses were typically irregular and spiculated, showing heterogeneous contrast enhancement, diffusion restriction, and type III enhancement curve. NMEs presented mainly as the area of focal or multiregional distribution with heterogeneous or clumped contrast enhancement, diffusion restriction, and type III enhancement curve. Lesion extent significantly varied between MRI and MMG/ultrasonography (USG) (P < 0.001) but did not differ between MGF and ultrasonography (USG). The larger the ILC, the higher the disproportion when lesion extent in MRI was compared with MMG (P < 0.001) and ultrasonography (USG) (P < 0.001). In the study group, there were 97 cases of luminal A subtype (59.9%), 54 cases of luminal B HER2− (33.3%), nine cases of luminal B HER2+ (5.5%), and two cases of triple negative (1.2%). The HER2 type was not found in the study group. We did not observe any significant correlation between molecular profile and imaging. Conclusion MRI is the most effective technique for the assessment of ILC local extent, which is important for optimal treatment planning. Further studies are needed to investigate if the intrinsic subtype of ILC can be predicted by imaging features on MRI.
Collapse
Affiliation(s)
- Bartosz Dołęga-Kozierowski
- Breast Unit, Department of Breast Imaging, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Michał Lis
- Burn and Plastic Surgery Department, Ludwik Rydygier Memorial Specialized Hospital in Krakow, Krakow, Poland
- *Correspondence: Michał Lis,
| | - Hanna Marszalska-Jacak
- Breast Unit, Department of Breast Imaging, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Mateusz Koziej
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Celer
- Breast Unit, Department of Breast Imaging, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Małgorzata Bandyk
- Breast Unit, Department of Breast Imaging, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Piotr Kasprzak
- Breast Unit, Department of Breast Imaging, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Bartłomiej Szynglarewicz
- Breast Unit, Department of Breast Surgery, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Matkowski
- Breast Unit, Department of Breast Surgery, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
11
|
Grubstein A, Rapson Y, Manor M, Yerushalmi R, Gavrieli S, Tamir S, Meshulam S, Atar E, Stemmer SM, Shochat T, Allweis TM. MRI background parenchymal enhancement in patients with invasive lobular carcinoma: Endocrine hormonal treatment effect. Breast Dis 2022; 41:317-323. [PMID: 35786645 DOI: 10.3233/bd-220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES High background parenchymal enhancement (BPE) levels and asymmetric distribution could cause diagnostic uncertainty due to morphological similarity to breast cancer, especially invasive lobular carcinoma (ILC). We investigated BPE in ILC patients, its association with the tumor hormonal profile, and the effect of endocrine treatment (ET). METHODS The analysis included all MRI examinations performed at our institution between 2010 and 2019 for ILC-diagnosed patients. Baseline study and the first follow-up study were reviewed. Digital medical records were reviewed to retrieve demographics/pathology results/treatment information. BPE and fibroglandular tissue were assessed qualitatively on the contralateral breast according to the criteria of the Breast Imaging Reporting and Data System (BI-RADS). RESULTS The study included 129 patients. Most (91%) had pure ILC. All received ET; 12% also received chemotherapy; 90% had surgery first; 70% by breast conservation. On the baseline MRI, 70% had mild or moderate BPE; whereas, on the follow-up study, the majority (59%) had minimal BPE. Most BPE reductions were by 2 degrees. In the baseline study, additional biopsies were required in 59% of cases, and in 17%, a short-term follow-up was recommended. In the follow-up study, biopsies were recommended in 10%, and a short-term follow-up was requested in 16%. A correlation between progesterone receptor intensity index and baseline BPE level was observed (r = 0.3, p = 0.004). CONCLUSION ILC patients usually exhibit high BPE. ET decreases BPE, and therefore may decrease false-positive interpretations. Additional research is needed to explore whether study can be performed on ET without compromising sensitivity. KEY POINTS ∙ High background parenchymal enhancement levels reduces breast MRI sensitivity, yielding high false positive rates especially when reporting cases of invasive lobular carcinoma [ILC].∙Treatment of ILC with endocrine therapy reduces background parenchymal enhancement and thus could decrease these false-positive interpretations.
Collapse
Affiliation(s)
- Ahuva Grubstein
- Radiology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Rapson
- Radiology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Manor
- Radiology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rinat Yerushalmi
- Oncology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Gavrieli
- Radiology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Tamir
- Radiology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sagit Meshulam
- Plastic surgery Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Atar
- Radiology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Salomon M Stemmer
- Oncology Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzippy Shochat
- Statistical Department, Rabin Medical Center, Beilinson, Petah Tikva affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tanir M Allweis
- Surgery Department, Hadassah Medical Center, Affiliated to Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
12
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|
13
|
Li JW, Cao YC, Zhao ZJ, Shi ZT, Duan XQ, Chang C, Chen JG. Prediction for pathological and immunohistochemical characteristics of triple-negative invasive breast carcinomas: the performance comparison between quantitative and qualitative sonographic feature analysis. Eur Radiol 2022; 32:1590-1600. [PMID: 34519862 DOI: 10.1007/s00330-021-08224-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Sonographic features are associated with pathological and immunohistochemical characteristics of triple-negative breast cancer (TNBC). To predict the biological property of TNBC, the performance using quantitative high-throughput sonographic feature analysis was compared with that using qualitative feature assessment. METHODS We retrospectively reviewed ultrasound images, clinical, pathological, and immunohistochemical (IHC) data of 252 female TNBC patients. All patients were subgrouped according to the histological grade, Ki67 expression level, and human epidermal growth factor receptor 2 (HER2) score. Qualitative sonographic feature assessment included shape, margin, posterior acoustic pattern, and calcification referring to the Breast Imaging Reporting and Data System (BI-RADS). Quantitative sonographic features were acquired based on the computer-aided radiomics analysis. Breast cancer masses were manually segmented from the surrounding breast tissues. For each ultrasound image, 1688 radiomics features of 7 feature classes were extracted. The principal component analysis (PCA), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were used to determine the high-throughput radiomics features that were highly correlated to biological properties. The performance using both quantitative and qualitative sonographic features to predict biological properties of TNBC was represented by the area under the receiver operating characteristic curve (AUC). RESULTS In the qualitative assessment, regular tumor shape, no angular or spiculated margin, posterior acoustic enhancement, and no calcification were used as the independent sonographic features for TNBC. Using the combination of these four features to predict the histological grade, Ki67, HER2, axillary lymph node metastasis (ALNM), and lymphovascular invasion (LVI), the AUC was 0.673, 0.680, 0.651, 0.587, and 0.566, respectively. The number of high-throughput features that closely correlated with biological properties was 34 for histological grade (AUC 0.942), 27 for Ki67 (AUC 0.732), 25 for HER2 (AUC 0.730), 34 for ALNM (AUC 0.804), and 34 for LVI (AUC 0.795). CONCLUSION High-throughput quantitative sonographic features are superior to traditional qualitative ultrasound features in predicting the biological behavior of TNBC. KEY POINTS • Sonographic appearances of TNBCs showed a great variety in accordance with its biological and clinical characteristics. • Both qualitative and quantitative sonographic features of TNBCs are associated with tumor biological characteristics. • The quantitative high-throughput feature analysis is superior to two-dimensional sonographic feature assessment in predicting tumor biological property.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Yu-Cheng Cao
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, #500 Dongchuan Rd., Shanghai, 200241, China
| | - Zhi-Jin Zhao
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Zhao-Ting Shi
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Xiao-Qian Duan
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, #500 Dongchuan Rd., Shanghai, 200241, China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
| | - Jian-Gang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, #500 Dongchuan Rd., Shanghai, 200241, China.
| |
Collapse
|
14
|
Ab Mumin N, Ramli Hamid MT, Wong JHD, Rahmat K, Ng KH. Magnetic Resonance Imaging Phenotypes of Breast Cancer Molecular Subtypes: A Systematic Review. Acad Radiol 2022; 29 Suppl 1:S89-S106. [PMID: 34481705 DOI: 10.1016/j.acra.2021.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) is the most sensitive imaging modality in detecting breast cancer. The purpose of this systematic review is to investigate the role of human extracted MRI phenotypes in classifying molecular subtypes of breast cancer. METHODS We performed a literature search of published articles on the application of MRI phenotypic features in invasive breast cancer molecular subtype classifications by radiologists' interpretation on Medline Complete, Pubmed, and Google scholar from 1st January 2000 to 31st March 2021. Of the 1453 literature identified, 42 fulfilled the inclusion criteria. RESULTS All studies were case-controlled, retrospective study and research-based. The majority of the studies assessed the MRI features using American College of Radiology- Breast Imaging Reporting and Data System (ACR-BIRADS) classification and using dynamic contrast-enhanced (DCE) kinetic features, Apparent Diffusion Coefficient (ADC) values, and T2 sequence. Most studies divided invasive breast cancer into 4 main subtypes, luminal A, luminal B, HER2, and triple-negative (TN) cancers, and used 2 readers. We present a summary of the radiologists' extracted breast MRI phenotypical features and their correlating breast cancer subtypes classifications. The characteristic features are morphology, enhancement kinetics, and T2 signal intensity. We found that the TN subtype has the most distinctive MRI features compared to the other subtypes and luminal A and B have many similar features. CONCLUSION The MRI features which are predictive of each subtype are the morphology, internal enhancement features, and T2 signal intensity, predominantly between TN and the rest. Radiologists' visual interpretation of some of MRI features may offer insight into the respective invasive breast cancer molecular subtype. However, current evidence are still limited to "suggestive" features instead of a diagnostic standard. Further research is recommended to explore this potential application, for example, by augmentation of radiologists' visual interpretation by artificial intelligence.
Collapse
|
15
|
Is There a Correlation between Multiparametric Assessment in Ultrasound and Intrinsic Subtype of Breast Cancer? J Clin Med 2021; 10:jcm10225394. [PMID: 34830676 PMCID: PMC8618837 DOI: 10.3390/jcm10225394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Molecular profile of breast cancer provides information about its biological activity, prognosis and treatment strategies. The purpose of our study was to investigate the correlation between ultrasound features and molecular subtypes of breast cancer. From June 2019 to December 2019, 86 patients (median age 57 years; range 32–88) with 102 breast cancer tumors were included in the study. The molecular subtypes were classified into five types: luminal A (LA), luminal B without HER2 overexpression (LB HER2−), luminal B with HER2 overexpression (LB HER2+), human epidermal growth factor receptor 2 positive (HER2+) and triple negative breast cancer (TNBC). Histopathological verification was obtained in core biopsy or/and post-surgery specimens in all cases. Univariate logistic regression analysis was performed to assess the association between the subtypes and ultrasound imaging features. Experienced radiologists assessed lesions according to the BIRADS-US lexicon. The ultrasound scans were performed with a Supersonic Aixplorer and Supersonix. Based on histopathological verification, the rates of LA, LB HER2−, LB HER2+, HER2+, and TNBC were 33, 17, 17, 16, 19, respectively. Both LB HER2+ and HER2+ subtypes presented higher incidence of calcification (OR = 3.125, p = 0.02, CI 0.0917–5.87) and HER2+ subtype presented a higher incidence of posterior enhancement (OR = 5.75, p = 0.03, CI 1.2257–32.8005), compared to other subtypes. The calcifications were less common in TNBC (OR = 0.176, p = 0.0041, CI 0.0469–0.5335) compared to other subtypes. There were no differences with regard to margin, shape, orientation, elasticity values and vascularity among five molecular subtypes. Our results suggest that there is a correlation between ultrasonographic features assessed according to BIRADS-US lexicon and BC subtypes with HER2 overexpression (both LB HER2+ and HER2+). It may be useful for identification of these aggressive subtypes of breast cancer.
Collapse
|
16
|
Ragusi MAA, Bismeijer T, van der Velden BHM, Loo CE, Canisius S, Wesseling J, Wessels LFA, Elias SG, Gilhuijs KGA. Contralateral parenchymal enhancement on MRI is associated with tumor proteasome pathway gene expression and overall survival of early ER+/HER2-breast cancer patients. Breast 2021; 60:230-237. [PMID: 34763270 PMCID: PMC8591464 DOI: 10.1016/j.breast.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose To assess whether contralateral parenchymal enhancement (CPE) on MRI is associated with gene expression pathways in ER+/HER2-breast cancer, and if so, whether such pathways are related to survival. Methods Preoperative breast MRIs were analyzed of early ER+/HER2-breast cancer patients eligible for breast-conserving surgery included in a prospective observational cohort study (MARGINS). The contralateral parenchyma was segmented and CPE was calculated as the average of the top-10% delayed enhancement. Total tumor RNA sequencing was performed and gene set enrichment analysis was used to reveal gene expression pathways associated with CPE (N = 226) and related to overall survival (OS) and invasive disease-free survival (IDFS) in multivariable survival analysis. The latter was also done for the METABRIC cohort (N = 1355). Results CPE was most strongly correlated with proteasome pathways (normalized enrichment statistic = 2.04, false discovery rate = .11). Patients with high CPE showed lower tumor proteasome gene expression. Proteasome gene expression had a hazard ratio (HR) of 1.40 (95% CI = 0.89, 2.16; P = .143) for OS in the MARGINS cohort and 1.53 (95% CI = 1.08, 2.14; P = .017) for IDFS, in METABRIC proteasome gene expression had an HR of 1.09 (95% CI = 1.01, 1.18; P = .020) for OS and 1.10 (95% CI = 1.02, 1.18; P = .012) for IDFS. Conclusion CPE was negatively correlated with tumor proteasome gene expression in early ER+/HER2-breast cancer patients. Low tumor proteasome gene expression was associated with improved survival in the METABRIC data. Contralateral parenchymal enhancement on MRI was associated with tumor proteasome gene expression in ER+/HER2-breast cancer. A high contralateral parenchymal enhancement was associated with a low proteasome gene expression in the breast cancer. Low proteasome tumor gene expression was associated with improved survival in an independent patient cohort.
Collapse
Affiliation(s)
- Max A A Ragusi
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | - Tycho Bismeijer
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas H M van der Velden
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sander Canisius
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 5, 2628 CD Delft, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Kenneth G A Gilhuijs
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
17
|
Davey MG, Davey MS, Boland MR, Ryan ÉJ, Lowery AJ, Kerin MJ. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging - A systematic review and meta-analysis. Eur J Radiol 2021; 144:109996. [PMID: 34624649 DOI: 10.1016/j.ejrad.2021.109996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Breast cancer has four distinct molecular subtypes which are discriminated using gene expression profiling following biopsy. Radiogenomics is an emerging field which utilises diagnostic imaging to reveal genomic properties of disease. We aimed to perform a systematic review of the current literature to evaluate the value radiomics in differentiating breast cancers into their molecular subtypes using diagnostic imaging. METHODS A systematic review was performed as per PRISMA guidelines. Studies assessing radiomictumour analysis in differentiatingbreast cancer molecular subtypeswere included. Quality was assessed using the radiomics quality score (RQS). Diagnostic sensitivity and specificity of radiomic analyses were included for meta-analysis; Study specific sensitivity and specificity were retrieved and summary ROC analysis were performed to compile pooled sensitivities and specificities. RESULTS Forty-one studies were included. Overall, there were 10,090 female patients (mean age of 47.6 ± 11.7 years, range: 21-93) and molecular subtypewas reported in 7,693 of cases, with Luminal A (LABC), Luminal B (LBBC), Human Epidermal Growth Factor Receptor-2 overexpressing (HER2+), and Triple Negative (TNBC) breast cancers representing 51.3%, 19.9%, 12.3% and 16.3% of tumour respectively. Seven studies provided radiomic analysis to determine molecular subtypes using mammography to differentiateTNBCvs.others (sensitivity: 0.82,specificity:0.79). Thirty-five studies reported on radiomic analysis of magnetic resonance imaging (MRI); LABC versus others(sensitivity:0.78,specificity:0.83),HER2+versusothers(sensitivity:0.87,specificity:0.88), andLBBCversusTNBC (sensitivity: 0.79,specificity:0.88) respectively. CONCLUSION Radiomic tumour assessment of contemporary breast imaging provide a novel option in determining breast cancer molecular subtypes. However, amelioration of such techniques are required and genetic expression assessment will remain the gold standard.
Collapse
Affiliation(s)
- Matthew G Davey
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland.
| | - Martin S Davey
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Michael R Boland
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Éanna J Ryan
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Aoife J Lowery
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Michael J Kerin
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| |
Collapse
|
18
|
Bonelli LA, Calabrese M, Belli P, Corcione S, Losio C, Montemezzi S, Pediconi F, Petrillo A, Zuiani C, Camera L, Carbonaro LA, Cozzi A, De Falco Alfano D, Gristina L, Panzeri M, Poirè I, Schiaffino S, Tosto S, Trecate G, Trimboli RM, Valdora F, Viganò S, Sardanelli F. MRI versus Mammography plus Ultrasound in Women at Intermediate Breast Cancer Risk: Study Design and Protocol of the MRIB Multicenter, Randomized, Controlled Trial. Diagnostics (Basel) 2021; 11:diagnostics11091635. [PMID: 34573983 PMCID: PMC8469187 DOI: 10.3390/diagnostics11091635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
In women at high/intermediate lifetime risk of breast cancer (BC-LTR), contrast-enhanced magnetic resonance imaging (MRI) added to mammography ± ultrasound (MX ± US) increases sensitivity but decreases specificity. Screening with MRI alone is an alternative and potentially more cost-effective strategy. Here, we describe the study protocol and the characteristics of enrolled patients for MRIB feasibility, multicenter, randomized, controlled trial, which aims to compare MRI alone versus MX+US in women at intermediate breast cancer risk (aged 40-59, with a 15-30% BC-LTR and/or extremely dense breasts). Two screening rounds per woman were planned in ten centers experienced in MRI screening, the primary endpoint being the rate of cancers detected in the 2 arms after 5 years of follow-up. From July 2013 to November 2015, 1254 women (mean age 47 years) were enrolled: 624 were assigned to MX+US and 630 to MRI. Most of them were aged below 50 (72%) and premenopausal (45%), and 52% used oral contraceptives. Among postmenopausal women, 15% had used hormone replacement therapy. Breast and/or ovarian cancer in mothers and/or sisters were reported by 37% of enrolled women, 79% had extremely dense breasts, and 41% had a 15-30% BC-LTR. The distribution of the major determinants of breast cancer risk profiles (breast density and family history of breast and ovarian cancer) of enrolled women varied across centers.
Collapse
Affiliation(s)
- Luigina Ada Bonelli
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558502
| | - Massimo Calabrese
- Unit of Diagnostic Senology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (L.G.); (S.T.); (F.V.)
| | - Paolo Belli
- Department of Radiological, Radiotherapic and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Stefano Corcione
- Breast Imaging Unit, Arcispedale Sant’Anna, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy; (S.C.); (D.D.F.A.)
| | - Claudio Losio
- Unit of Senology, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (C.L.); (M.P.)
| | - Stefania Montemezzi
- Unit of Radiology BT, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (S.M.); (L.C.)
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, Università degli Studi “La Sapienza”, 00161 Roma, Italy;
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Chiara Zuiani
- Institute of Radiology, Azienda Ospedaliera Universitaria “Santa Maria della Misericordia”, Università degli Studi di Udine, 33100 Udine, Italy;
| | - Lucia Camera
- Unit of Radiology BT, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (S.M.); (L.C.)
| | - Luca Alessandro Carbonaro
- Unit of Radiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.A.C.); (S.S.); (F.S.)
- Department of Radiology, Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milano, Italy
| | - Andrea Cozzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.C.); (R.M.T.)
| | - Daniele De Falco Alfano
- Breast Imaging Unit, Arcispedale Sant’Anna, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy; (S.C.); (D.D.F.A.)
- Mammography Center, Radiology Unit, Policlinico Sant’Orsola–Malpighi, 40138 Bologna, Italy
| | - Licia Gristina
- Unit of Diagnostic Senology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (L.G.); (S.T.); (F.V.)
| | - Marta Panzeri
- Unit of Senology, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (C.L.); (M.P.)
| | - Ilaria Poirè
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Simone Schiaffino
- Unit of Radiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.A.C.); (S.S.); (F.S.)
| | - Simona Tosto
- Unit of Diagnostic Senology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (L.G.); (S.T.); (F.V.)
| | - Giovanna Trecate
- Department of Diagnostic Imaging, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (G.T.); (S.V.)
| | - Rubina Manuela Trimboli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.C.); (R.M.T.)
- Breast Imaging and Screening Unit, Department of Radiology, Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy
| | - Francesca Valdora
- Unit of Diagnostic Senology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (L.G.); (S.T.); (F.V.)
| | - Sara Viganò
- Department of Diagnostic Imaging, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy; (G.T.); (S.V.)
| | - Francesco Sardanelli
- Unit of Radiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.A.C.); (S.S.); (F.S.)
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.C.); (R.M.T.)
| |
Collapse
|
19
|
You C, Zhang Y, Chen Y, Hu X, Hu D, Wu J, Gu Y, Peng W. Evaluation of Background Parenchymal Enhancement and Histogram-Based Diffusion-Weighted Image in Determining the Molecular Subtype of Breast Cancer. J Comput Assist Tomogr 2021; 45:711-716. [PMID: 34546678 DOI: 10.1097/rct.0000000000001239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to evaluate the value of background parenchymal enhancement (BPE) and diffusion-weighted image (DWI) histogram features in differentiating among different molecular subtypes of breast cancers and investigate the relationship between BPE and DWI features. MATERIALS AND METHODS We prospectively enrolled 142 patients with breast cancer between January and November 2018. All patients underwent breast magnetic resonance imaging before core needle biopsy. The quantitative BPE from dynamic enhanced images and the first-order histogram features extracted from DWI were analyzed. Univariate analysis of variance was used to compare differences in DWI histogram features and BPE characteristics among different molecular subtypes. Spearman test was used to compare the correlation between these imaging indexes. RESULTS A total of 142 patients had 142 lesions, including 17 cases of triple-negative breast cancer, 12 cases of luminal A type breast cancer, 39 cases of luminal B type breast cancer, and 74 cases of human epidermal growth factor receptor 2-positive breast cancer. The apparent diffusion coefficient (ADC) 95th percentile, ADC kurtosis, and BPE were significantly different among 4 subtype groups (P < 0.05), especially between the triple-negative subtype and any other subtype (P < 0.05 in pairwise comparisons). There was a weak but significant correlation between BPE and kurtosis of ADC (r = -0.176, P = 0.036). CONCLUSIONS Diffusion-weighted image histogram features (95th percentile ADC value and kurtosis value of ADC) and BPE features were different in the 4 molecular subtypes of breast cancer, especially in the triple-negative breast cancer subtype. Background parenchymal enhancement was negatively correlated with the kurtosis value of ADC.
Collapse
Affiliation(s)
- Chao You
- From the Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University
| | - Yunyan Zhang
- Department of Radiology, Shanghai Proton and Heavy Ion Center
| | - Yanqiong Chen
- From the Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University
| | - Xiaoxin Hu
- From the Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University
| | - Danting Hu
- From the Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Yajia Gu
- From the Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University
| | - Weijun Peng
- From the Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University
| |
Collapse
|
20
|
Gatta G, Cappabianca S, La Forgia D, Massafra R, Fanizzi A, Cuccurullo V, Brunese L, Tagliafico A, Grassi R. Second-Generation 3D Automated Breast Ultrasonography (Prone ABUS) for Dense Breast Cancer Screening Integrated to Mammography: Effectiveness, Performance and Detection Rates. J Pers Med 2021; 11:875. [PMID: 34575652 PMCID: PMC8468126 DOI: 10.3390/jpm11090875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
In our study, we added a three-dimensional automated breast ultrasound (3D ABUS) to mammography to evaluate the performance and cancer detection rate of mammography alone or with the addition of 3D prone ABUS in women with dense breasts. Our prospective observational study was based on the screening of 1165 asymptomatic women with dense breasts who selected independent of risk factors. The results evaluated include the cancers detected between June 2017 and February 2019, and all surveys were subjected to a double reading. Mammography detected four cancers, while mammography combined with a prone Sofia system (3D ABUS) doubled the detection rate, with eight instances of cancer being found. The diagnostic yield difference was 3.4 per 1000. Mammography alone was subjected to a recall rate of 14.5 for 1000 women, while mammography combined with 3D prone ABUS resulted in a recall rate of 26.6 per 1000 women. We also observed an additional 12.1 recalls per 1000 women screened. Integrating full-field digital mammography (FFDM) with 3D prone ABUS in women with high breast density increases and improves breast cancer detection rates in a significant manner, including small and invasive cancers, and it has a tolerable impact on recall rate. Moreover, 3D prone ABUS performance results are comparable with the performance results of the supine 3D ABUS system.
Collapse
Affiliation(s)
- Gianluca Gatta
- Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (G.G.); (S.C.); (V.C.); (R.G.)
| | - Salvatore Cappabianca
- Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (G.G.); (S.C.); (V.C.); (R.G.)
| | - Daniele La Forgia
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.); (A.F.)
| | - Raffaella Massafra
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.); (A.F.)
| | - Annarita Fanizzi
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.); (A.F.)
| | - Vincenzo Cuccurullo
- Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (G.G.); (S.C.); (V.C.); (R.G.)
| | - Luca Brunese
- Dipartimento di Medicina e Scienze della Salute “Vincenzo Tiberio”—Università degli Studi del Molise, 86100 Campobasso, Italy;
| | | | - Roberto Grassi
- Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (G.G.); (S.C.); (V.C.); (R.G.)
| |
Collapse
|
21
|
Differentiating Breast Tumors from Background Parenchymal Enhancement at Contrast-Enhanced Mammography: The Role of Radiomics-A Pilot Reader Study. Diagnostics (Basel) 2021; 11:diagnostics11071248. [PMID: 34359332 PMCID: PMC8305277 DOI: 10.3390/diagnostics11071248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The purpose of this study was to assess the effectiveness of the radiomic analysis of contrast-enhanced spectral mammography (CESM) in discriminating between breast cancers and background parenchymal enhancement (BPE). Methods: This retrospective study included 38 patients that underwent CESM examinations for clinical purposes between January 2019–December 2020. A total of 57 malignant breast lesions and 23 CESM examinations with 31 regions of BPE were assessed through radiomic analysis using MaZda software. The parameters that demonstrated to be independent predictors for breast malignancy were exported into the B11 program and a k-nearest neighbor classifier (k-NN) was trained on the initial groups of patients and was tested using a validation group. Histopathology results obtained after surgery were considered the gold standard. Results: Radiomic analysis found WavEnLL_s_2 parameter as an independent predictor for breast malignancies with a sensitivity of 68.42% and a specificity of 83.87%. The prediction model that included CH1D6SumAverg, CN4D6Correlat, Kurtosis, Perc01, Perc10, Skewness, and WavEnLL_s_2 parameters had a sensitivity of 73.68% and a specificity of 80.65%. Higher values were obtained of WavEnLL_s_2 and the prediction model for tumors than for BPEs. The comparison between the ROC curves provided by the WaveEnLL_s_2 and the entire prediction model did not show statistically significant results (p = 0.0943). The k-NN classifier based on the parameter WavEnLL_s_2 had a sensitivity and specificity on training and validating groups of 71.93% and 45.16% vs. 60% and 44.44%, respectively. Conclusion: Radiomic analysis has the potential to differentiate CESM between malignant lesions and BPE. Further quantitative insight into parenchymal enhancement patterns should be performed to facilitate the role of BPE in personalized clinical decision-making and risk assessment.
Collapse
|
22
|
Chakraborty D, Ivan C, Amero P, Khan M, Rodriguez-Aguayo C, Başağaoğlu H, Lopez-Berestein G. Explainable Artificial Intelligence Reveals Novel Insight into Tumor Microenvironment Conditions Linked with Better Prognosis in Patients with Breast Cancer. Cancers (Basel) 2021; 13:3450. [PMID: 34298668 PMCID: PMC8303703 DOI: 10.3390/cancers13143450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
We investigated the data-driven relationship between immune cell composition in the tumor microenvironment (TME) and the ≥5-year survival rates of breast cancer patients using explainable artificial intelligence (XAI) models. We acquired TCGA breast invasive carcinoma data from the cbioPortal and retrieved immune cell composition estimates from bulk RNA sequencing data from TIMER2.0 based on EPIC, CIBERSORT, TIMER, and xCell computational methods. Novel insights derived from our XAI model showed that B cells, CD8+ T cells, M0 macrophages, and NK T cells are the most critical TME features for enhanced prognosis of breast cancer patients. Our XAI model also revealed the inflection points of these critical TME features, above or below which ≥5-year survival rates improve. Subsequently, we ascertained the conditional probabilities of ≥5-year survival under specific conditions inferred from the inflection points. In particular, the XAI models revealed that the B cell fraction (relative to all cells in a sample) exceeding 0.025, M0 macrophage fraction (relative to the total immune cell content) below 0.05, and NK T cell and CD8+ T cell fractions (based on cancer type-specific arbitrary units) above 0.075 and 0.25, respectively, in the TME could enhance the ≥5-year survival in breast cancer patients. The findings could lead to accurate clinical predictions and enhanced immunotherapies, and to the design of innovative strategies to reprogram the breast TME.
Collapse
Affiliation(s)
- Debaditya Chakraborty
- Department of Construction Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Maliha Khan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Meng W, Sun Y, Qian H, Chen X, Yu Q, Abiyasi N, Yan S, Peng H, Zhang H, Zhang X. Computer-Aided Diagnosis Evaluation of the Correlation Between Magnetic Resonance Imaging With Molecular Subtypes in Breast Cancer. Front Oncol 2021; 11:693339. [PMID: 34249745 PMCID: PMC8260834 DOI: 10.3389/fonc.2021.693339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
Background There is a demand for additional alternative methods that can allow the differentiation of the breast tumor into molecular subtypes precisely and conveniently. Purpose The present study aimed to determine suitable optimal classifiers and investigate the general applicability of computer-aided diagnosis (CAD) to associate between the breast cancer molecular subtype and the extracted MR imaging features. Methods We analyzed a total of 264 patients (mean age: 47.9 ± 9.7 years; range: 19–81 years) with 264 masses (mean size: 28.6 ± 15.86 mm; range: 5–91 mm) using a Unet model and Gradient Tree Boosting for segmentation and classification. Results The tumors were segmented clearly by the Unet model automatically. All the extracted features which including the shape features,the texture features of the tumors and the clinical features were input into the classifiers for classification, and the results showed that the GTB classifier is superior to other classifiers, which achieved F1-Score 0.72, AUC 0.81 and score 0.71. Analyzed the different features combinations, we founded that the texture features associated with the clinical features are the optimal features to different the breast cancer subtypes. Conclusion CAD is feasible to differentiate the breast cancer subtypes, automatical segmentation were feasible by Unet model and the extracted texture features from breast MR imaging with the clinical features can be used to help differentiating the molecular subtype. Moreover, in the clinical features, BPE and age characteristics have the best potential for subtype.
Collapse
Affiliation(s)
- Wei Meng
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfeng Sun
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haibin Qian
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaodan Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiujie Yu
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nanding Abiyasi
- Department of Pathology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaolei Yan
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiyong Peng
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxia Zhang
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiushi Zhang
- Department of Radiology, Third Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
A Review of Breast Imaging for Timely Diagnosis of Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115509. [PMID: 34063854 PMCID: PMC8196652 DOI: 10.3390/ijerph18115509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
Breast cancer (BC) is the cancer with the highest incidence in women in the world. In this last period, the COVID-19 pandemic has caused in many cases a drastic reduction of routine breast imaging activity due to the combination of various factors. The survival of BC is directly proportional to the earliness of diagnosis, and especially during this period, it is at least fundamental to remember that a diagnostic delay of even just three months could affect BC outcomes. In this article we will review the state of the art of breast imaging, starting from morphological imaging, i.e., mammography, tomosynthesis, ultrasound and magnetic resonance imaging and contrast-enhanced mammography, and their most recent evolutions; and ending with functional images, i.e., magnetic resonance imaging and contrast enhanced mammography.
Collapse
|
25
|
Massafra R, Bove S, Lorusso V, Biafora A, Comes MC, Didonna V, Diotaiuti S, Fanizzi A, Nardone A, Nolasco A, Ressa CM, Tamborra P, Terenzio A, La Forgia D. Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images. Diagnostics (Basel) 2021; 11:diagnostics11040684. [PMID: 33920221 PMCID: PMC8070152 DOI: 10.3390/diagnostics11040684] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Contrast-enhanced spectral mammography (CESM) is an advanced instrument for breast care that is still operator dependent. The aim of this paper is the proposal of an automated system able to discriminate benign and malignant breast lesions based on radiomic analysis. We selected a set of 58 regions of interest (ROIs) extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) for the breast cancer screening phase between March 2017 and June 2018. We extracted 464 features of different kinds, such as points and corners of interest, textural and statistical features from both the original ROIs and the ones obtained by a Haar decomposition and a gradient image implementation. The features data had a large dimension that can affect the process and accuracy of cancer classification. Therefore, a classification scheme for dimension reduction was needed. Specifically, a principal component analysis (PCA) dimension reduction technique that includes the calculation of variance proportion for eigenvector selection was used. For the classification method, we trained three different classifiers, that is a random forest, a naïve Bayes and a logistic regression, on each sub-set of principal components (PC) selected by a sequential forward algorithm. Moreover, we focused on the starting features that contributed most to the calculation of the related PCs, which returned the best classification models. The method obtained with the aid of the random forest classifier resulted in the best prediction of benign/malignant ROIs with median values for sensitivity and specificity of 88.37% and 100%, respectively, by using only three PCs. The features that had shown the greatest contribution to the definition of the same were almost all extracted from the LE images. Our system could represent a valid support tool for radiologists for interpreting CESM images.
Collapse
Affiliation(s)
- Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (V.D.); (P.T.)
| | - Samantha Bove
- Dipartimento di Matematica, Università degli Studi di Bari, 70121 Bari, Italy;
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (V.L.); (A.N.)
| | - Albino Biafora
- Dipartimento di Economia e Finanza, Università degli Studi di Bari, 70124 Bari, Italy;
| | - Maria Colomba Comes
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (V.D.); (P.T.)
| | - Vittorio Didonna
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (V.D.); (P.T.)
| | - Sergio Diotaiuti
- Struttura Semplice Dipartimentale di Chirurgia, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (V.D.); (P.T.)
- Correspondence: ; Tel.: +39-080-555-5111
| | - Annalisa Nardone
- Unita Opertiva Complessa di Radioterapia, IRCCS Istituto Tumori ”Giovanni Paolo II”, 70124 Bari, Italy;
| | - Angelo Nolasco
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (V.L.); (A.N.)
| | - Cosmo Maurizio Ressa
- Unità Operativa Complessa di Chirurgica Plastica e Ricostruttiva, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Pasquale Tamborra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (V.D.); (P.T.)
| | - Antonella Terenzio
- Unità di Oncologia Medica, Università Campus Bio-Medico, 00128 Roma, Italy;
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| |
Collapse
|
26
|
Response Predictivity to Neoadjuvant Therapies in Breast Cancer: A Qualitative Analysis of Background Parenchymal Enhancement in DCE-MRI. J Pers Med 2021; 11:jpm11040256. [PMID: 33915842 PMCID: PMC8065517 DOI: 10.3390/jpm11040256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background: For assessing the predictability of oncology neoadjuvant therapy results, the background parenchymal enhancement (BPE) parameter in breast magnetic resonance imaging (MRI) has acquired increased interest. This work aims to qualitatively evaluate the BPE parameter as a potential predictive marker for neoadjuvant therapy. Method: Three radiologists examined, in triple-blind modality, the MRIs of 80 patients performed before the start of chemotherapy, after three months from the start of treatment, and after surgery. They identified the portion of fibroglandular tissue (FGT) and BPE of the contralateral breast to the tumor in the basal control pre-treatment (baseline). Results: We observed a reduction of BPE classes in serial MRI checks performed during neoadjuvant therapy, as compared to baseline pre-treatment conditions, in 61.3% of patients in the intermediate step, and in 86.7% of patients in the final step. BPE reduction was significantly associated with sequential anthracyclines/taxane administration in the first cycle of neoadjuvant therapy compared to anti-HER2 containing therapies. The therapy response was also significantly related to tumor size. There were no associations with menopausal status, fibroglandular tissue (FGT) amount, age, BPE baseline, BPE in intermediate, and in the final MRI step. Conclusions: The measured variability of this parameter during therapy could predict therapy effectiveness in early stages, improving decision-making in the perspective of personalized medicine. Our preliminary results suggest that BPE may represent a predictive factor in response to neoadjuvant therapy in breast cancer, warranting future investigations in conjunction with radiomics.
Collapse
|
27
|
Moyya PD, Asaithambi M. Radiomics- Quantitative Biomarker Analysis for Breast Cancer Diagnosis and Prediction: A Review. Curr Med Imaging 2021; 18:3-17. [PMID: 33655872 DOI: 10.2174/1573405617666210303102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer of the breast has become a global problem for women's health. Though concerns regarding early detection and accurate diagnosis were raised, an effort is required for precision medicine as well as personalized treatment. In the past years, the area of medicinal imaging has seen an unprecedented growth that leads to an advancement of radiomics, which provides countless quantitative biomarkers extracted from modern diagnostic images, including a detailed tumor characterization of breast malignancy. DISCUSSION In this research, we presented the methodology and implementation of radiomics, together with its future trends and challenges by the basis of published papers. Radiomics could distinguish between malignant from benign tumors, predict prognostic factors, molecular subtypes of breast carcinoma, treatment response to neoadjuvant chemotherapy (NAC), and recurrence survival. The incorporation of quantitative knowledge with clinical, histopathological and genomic information will enable physicians to afford customized care of treatment for patients with breast cancer. CONCLUSION Our research was intended to help physicians and radiologists learn fundamental knowledge about radiomics and also to work collaboratively with researchers to explore evidence for further usage in clinical practice.
Collapse
Affiliation(s)
- Priscilla Dinkar Moyya
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu-632014. India
| | - Mythili Asaithambi
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu-632014. India
| |
Collapse
|
28
|
Rella R, Contegiacomo A, Bufi E, Mercogliano S, Belli P, Manfredi R. Background parenchymal enhancement and breast cancer: a review of the emerging evidences about its potential use as imaging biomarker. Br J Radiol 2021; 94:20200630. [PMID: 33035073 DOI: 10.1259/bjr.20200630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To conduct a systematic review of evidences about the relationship between background parenchymal enhancement (BPE) of the contralateral healthy breast and breast cancer: its association with clinicopathological breast cancer characteristics, its potential as predictive and prognostic biomarker and the biological linkage between BPE and breast cancer. METHODS A computerized literature search using PubMed and Google Scholar was performed up to June 2020. Two authors independently conducted search, screening, quality assessment, and extraction of data from the eligible studies. Studies were assessed for quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. RESULTS Of the 476 articles identified, 22 articles met the inclusion criteria. No significant association was found between BPE and invasiveness, histological cancer type, T- and N-stage, multifocality, lymphatic and vascular invasion and histological tumour grade while the association between BPE and molecular subtypes is still unclear. As predictive biomarker, a greater decrease in BPE during and after neoadjuvant chemotherapy was associated with pathological complete response. Results about the role of BPE as prognostic factor were inconsistent. An association between high BPE and microvessel density, CD34 and VEGF (histological markers of vascularization and angiogenesis) was found. CONCLUSIONS BPE of the contralateral breast is associated with breast cancer in several aspects, therefore it has been proposed as a tool to refine breast cancer decision-making process. ADVANCES IN KNOWLEDGE Additional researches with standardized BPE assessment are needed to translate this emerging biomarker into clinical practice in the era of personalized medicine.
Collapse
Affiliation(s)
- Rossella Rella
- UOC di Diagnostica per immagini ed Interventistica Generale, Dipartimento di diagnostica per immagini, radioterapia oncologica ed ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italia
| | - Andrea Contegiacomo
- UOC di Diagnostica per immagini ed Interventistica Generale, Dipartimento di diagnostica per immagini, radioterapia oncologica ed ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italia
| | - Enida Bufi
- UOC di Diagnostica per immagini ed Interventistica Generale, Dipartimento di diagnostica per immagini, radioterapia oncologica ed ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italia
| | - Sara Mercogliano
- Università Cattolica Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italia
| | - Paolo Belli
- UOC di Diagnostica per immagini ed Interventistica Generale, Dipartimento di diagnostica per immagini, radioterapia oncologica ed ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italia.,Università Cattolica Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italia
| | - Riccardo Manfredi
- UOC di Diagnostica per immagini ed Interventistica Generale, Dipartimento di diagnostica per immagini, radioterapia oncologica ed ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italia.,Università Cattolica Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italia
| |
Collapse
|
29
|
Predicting Molecular Subtypes of Breast Cancer with Mammography and Ultrasound Findings: Introduction of Sono-Mammometry Score. Radiol Res Pract 2021; 2021:6691958. [PMID: 33628504 PMCID: PMC7886512 DOI: 10.1155/2021/6691958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
We studied the correlation of sonographic and digital mammographic features with molecular classification of breast cancer. Imaging features from 313 patients with preliminary ultrasound and digital mammogram between November 2017 and May 2020 were compared with histopathology and immunohistochemical analysis for the prediction of molecular classification of breast cancer. We also devised a score called “sono-mammometry” score consisting of few simple imaging features which can easily be performed in outpatient settings. We studied that non-triple-negative breast cancers are predominantly hypoechoic and strongly correlate with the presence of irregular spiculated margins along with peripheral echogenic halo, posterior shadowing, and microcalcifications, while there is considerable variation in imaging features of TNBC as some of its imaging features overlap with those of typical benign tumors. Although imaging characteristics are helpful in the prediction of molecular classification, the prognostication value of these imaging features is still weak. There is considerable variation in imaging features which warrants vigilance towards improved diagnostic performance. To help better understand these features, our sono-mammometry score can serve as straightforward test which is assumed to be functional and productive in resource-limited settings.
Collapse
|
30
|
Moffa G, Galati F, Collalunga E, Rizzo V, Kripa E, D’Amati G, Pediconi F. Can MRI Biomarkers Predict Triple-Negative Breast Cancer? Diagnostics (Basel) 2020; 10:diagnostics10121090. [PMID: 33333733 PMCID: PMC7765199 DOI: 10.3390/diagnostics10121090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate MRI features of triple-negative breast cancer (TNBC) compared with non-TNBC, to predict histopathological results. In the study, 26 patients with TNBC and 24 with non-TNBC who underwent multiparametric MRI of the breast on a 3 T magnet over a 10-months period were retrospectively recruited. MR imaging sets were evaluated by two experienced breast radiologists in consensus and classified according to the 2013 American College of Radiology (ACR) BI-RADS lexicon. The comparison between the two groups was performed using the Chi-square test and followed by logistic regression analyses. We found that 92% of tumors presented as mass enhancements (p = 0.192). 41.7% of TNBC and 86.4% of non-TNBC had irregular shape (p = 0.005); 58.3% of TNBC showed circumscribed margins, compared to 9.1% of non-TNBC masses (p = 0.001); 75% of TNBC and 9.1% of non-TNBC showed rim enhancement (p < 0.001). Intralesional necrosis was significantly associated with TNBC (p = 0.016). Rim enhancement and intralesional necrosis risulted to be positive predictors at univariate analysis (OR = 29.86, and 8.10, respectively) and the multivariate analysis confirmed that rim enhancement is independently associated with TNBC (OR = 33.08). The mean ADC values were significantly higher for TNBC (p = 0.011). In conclusion, TNBC is associated with specific MRI features that can be possible predictors of pathological results, with a consequent prognostic value.
Collapse
Affiliation(s)
- Giuliana Moffa
- Correspondence: ; Tel.: +39-06-4455602; Fax: +39-06-490243
| | | | | | | | | | | | | |
Collapse
|
31
|
Tumour Stroma Ratio Assessment Using Digital Image Analysis Predicts Survival in Triple Negative and Luminal Breast Cancer. Cancers (Basel) 2020; 12:cancers12123749. [PMID: 33322174 PMCID: PMC7764351 DOI: 10.3390/cancers12123749] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
We aimed to determine the clinical significance of tumour stroma ratio (TSR) in luminal and triple negative breast cancer (TNBC) using digital image analysis and machine learning algorithms. Automated image analysis using QuPath software was applied to a cohort of 647 breast cancer patients (403 luminal and 244 TNBC) using digital H&E images of tissue microarrays (TMAs). Kaplan-Meier and Cox proportional hazards were used to ascertain relationships with overall survival (OS) and breast cancer specific survival (BCSS). For TNBC, low TSR (high stroma) was associated with poor prognosis for both OS (HR 1.9, CI 1.1-3.3, p = 0.021) and BCSS (HR 2.6, HR 1.3-5.4, p = 0.007) in multivariate models, independent of age, size, grade, sTILs, lymph nodal status and chemotherapy. However, for luminal tumours, low TSR (high stroma) was associated with a favourable prognosis in MVA for OS (HR 0.6, CI 0.4-0.8, p = 0.001) but not for BCSS. TSR is a prognostic factor of most significance in TNBC, but also in luminal breast cancer, and can be reliably assessed using quantitative image analysis of TMAs. Further investigation into the contribution of tumour subtype stromal phenotype may further refine these findings.
Collapse
|
32
|
Watt GP, Sung J, Morris EA, Buys SS, Bradbury AR, Brooks JD, Conant EF, Weinstein SP, Kontos D, Woods M, Colonna SV, Liang X, Stein MA, Pike MC, Bernstein JL. Association of breast cancer with MRI background parenchymal enhancement: the IMAGINE case-control study. Breast Cancer Res 2020; 22:138. [PMID: 33287857 PMCID: PMC7722419 DOI: 10.1186/s13058-020-01375-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023] Open
Abstract
Background Background parenchymal enhancement (BPE) on breast magnetic resonance imaging (MRI) may be associated with breast cancer risk, but previous studies of the association are equivocal and limited by incomplete blinding of BPE assessment. In this study, we evaluated the association between BPE and breast cancer based on fully blinded assessments of BPE in the unaffected breast. Methods The Imaging and Epidemiology (IMAGINE) study is a multicenter breast cancer case-control study of women receiving diagnostic, screening, or follow-up breast MRI, recruited from three comprehensive cancer centers in the USA. Cases had a first diagnosis of unilateral breast cancer and controls had no history of or current breast cancer. A single board-certified breast radiologist with 12 years’ experience, blinded to case-control status and clinical information, assessed the unaffected breast for BPE without view of the affected breast of cases (or the corresponding breast laterality of controls). The association between BPE and breast cancer was estimated by multivariable logistic regression separately for premenopausal and postmenopausal women. Results The analytic dataset included 835 cases and 963 controls. Adjusting for fibroglandular tissue (breast density), age, race/ethnicity, BMI, parity, family history of breast cancer, BRCA1/BRCA2 mutations, and other confounders, moderate/marked BPE (vs minimal/mild BPE) was associated with breast cancer among premenopausal women [odds ratio (OR) 1.49, 95% CI 1.05–2.11; p = 0.02]. Among postmenopausal women, mild/moderate/marked vs minimal BPE had a similar, but statistically non-significant, association with breast cancer (OR 1.45, 95% CI 0.92–2.27; p = 0.1). Conclusions BPE is associated with breast cancer in premenopausal women, and possibly postmenopausal women, after adjustment for breast density and confounders. Our results suggest that BPE should be evaluated alongside breast density for inclusion in models predicting breast cancer risk.
Collapse
Affiliation(s)
- Gordon P Watt
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave., Second Floor, New York, NY, 10017, USA.
| | - Janice Sung
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Elizabeth A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Saundra S Buys
- Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Angela R Bradbury
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Jennifer D Brooks
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Emily F Conant
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Susan P Weinstein
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Despina Kontos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Meghan Woods
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave., Second Floor, New York, NY, 10017, USA
| | - Sarah V Colonna
- Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Xiaolin Liang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave., Second Floor, New York, NY, 10017, USA
| | - Matthew A Stein
- Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave., Second Floor, New York, NY, 10017, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave., Second Floor, New York, NY, 10017, USA
| |
Collapse
|
33
|
Temiz K, Oztekin PS, Hucumenoglu S, Koseoglu EN, Kosar PN. Correlation of prognostic factors with MRI findings in malignant breast lesions. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Magnetic resonance imaging (MRI) of the breast represents the most sensitive imaging modality in the detection of breast cancer, with a reported sensitivity between 94 and 100%. We aim to detect the correlation between MRI findings and pathologically detected prognostic factors in malignant breast lesions.
Breast parenchymal density distribution, background parenchymal enhancement pattern, lesion’s morphologic features, T2WI signal characteristics, contrast enhancement, time/signal intensity curves, and lesions localizations in breast were evaluated using dynamic MRI images. Histopathological diagnosis, maximum measurements of the lesion, histological grade, presence of estrogen and/or progesterone receptors, c-erb B2, and Ki-67 parameters were noted as prognostic factors.
Results
We cannot detect any relationship between the breast parenchymal density and prognostic factors. Mild background breast enhancement is related with ER presence, a good prognostic factor. Histopathological grade of the lesions augmented with the increase in the lesion diameters. ADC values are not related with prognostic factors.
Conclusion
A mild background enhancement, an intermediate signal intensity on T2WI, a high tpeak value, and absence of pathological axillary lymph node are found to be related with good prognostic factors. An irregular contour, a huge diameter, having a type III kinetic curve, a high slopei value, and presence of pathological axillary lymph node are found to be related with poor prognostic factors. MRI can be used to predict prognostic factors in breast cancer cases.
Collapse
|
34
|
La Forgia D, Fanizzi A, Campobasso F, Bellotti R, Didonna V, Lorusso V, Moschetta M, Massafra R, Tamborra P, Tangaro S, Telegrafo M, Pastena MI, Zito A. Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome. Diagnostics (Basel) 2020; 10:E708. [PMID: 32957690 PMCID: PMC7555402 DOI: 10.3390/diagnostics10090708] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Contrast-Enhanced Spectral Mammography (CESM) is a recently introduced mammographic method with characteristics particularly suitable for breast cancer radiomic analysis. This work aims to evaluate radiomic features for predicting histological outcome and two cancer molecular subtypes, namely Human Epidermal growth factor Receptor 2 (HER2)-positive and triple-negative. From 52 patients, 68 lesions were identified and confirmed on histological examination. Radiomic analysis was performed on regions of interest (ROIs) selected from both low-energy (LE) and ReCombined (RC) CESM images. Fourteen statistical features were extracted from each ROI. Expression of estrogen receptor (ER) was significantly correlated with variation coefficient and variation range calculated on both LE and RC images; progesterone receptor (PR) with skewness index calculated on LE images; and Ki67 with variation coefficient, variation range, entropy and relative smoothness indices calculated on RC images. HER2 was significantly associated with relative smoothness calculated on LE images, and grading tumor with variation coefficient, entropy and relative smoothness calculated on RC images. Encouraging results for differentiation between ER+/ER-, PR+/PR-, HER2+/HER2-, Ki67+/Ki67-, High-Grade/Low-Grade and TN/NTN were obtained. Specifically, the highest performances were obtained for discriminating HER2+/HER2- (90.87%), ER+/ER- (83.79%) and Ki67+/Ki67- (84.80%). Our results suggest an interesting role for radiomics in CESM to predict histological outcomes and particular tumors' molecular subtype.
Collapse
Affiliation(s)
- Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Francesco Campobasso
- Dipartimento di Economia e Finanza, Università degli Studi di Bari “Aldo Moro”, Largo Abbazia S. Scolastica, 70124 Bari, Italy;
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro”, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
| | - Vittorio Didonna
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Marco Moschetta
- Unità Operativa Semplice Dipartimentale Radiodiagnostica ad Indirizzo Senologico, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (M.T.)
| | - Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Pasquale Tamborra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Michele Telegrafo
- Unità Operativa Semplice Dipartimentale Radiodiagnostica ad Indirizzo Senologico, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (M.T.)
| | - Maria Irene Pastena
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| |
Collapse
|
35
|
Borkowski K, Rossi C, Ciritsis A, Marcon M, Hejduk P, Stieb S, Boss A, Berger N. Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach. Medicine (Baltimore) 2020; 99:e21243. [PMID: 32702902 PMCID: PMC7373599 DOI: 10.1097/md.0000000000021243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Marked enhancement of the fibroglandular tissue on contrast-enhanced breast magnetic resonance imaging (MRI) may affect lesion detection and classification and is suggested to be associated with higher risk of developing breast cancer. The background parenchymal enhancement (BPE) is qualitatively classified according to the BI-RADS atlas into the categories "minimal," "mild," "moderate," and "marked." The purpose of this study was to train a deep convolutional neural network (dCNN) for standardized and automatic classification of BPE categories.This IRB-approved retrospective study included 11,769 single MR images from 149 patients. The MR images were derived from the subtraction between the first post-contrast volume and the native T1-weighted images. A hierarchic approach was implemented relying on 2 dCNN models for detection of MR-slices imaging breast tissue and for BPE classification, respectively. Data annotation was performed by 2 board-certified radiologists. The consensus of the 2 radiologists was chosen as reference for BPE classification. The clinical performances of the single readers and of the dCNN were statistically compared using the quadratic Cohen's kappa.Slices depicting the breast were classified with training, validation, and real-world (test) accuracies of 98%, 96%, and 97%, respectively. Over the 4 classes, the BPE classification was reached with mean accuracies of 74% for training, 75% for the validation, and 75% for the real word dataset. As compared to the reference, the inter-reader reliabilities for the radiologists were 0.780 (reader 1) and 0.679 (reader 2). On the other hand, the reliability for the dCNN model was 0.815.Automatic classification of BPE can be performed with high accuracy and support the standardization of tissue classification in MRI.
Collapse
|
36
|
Formes précoces des cancers du sein en fonction des différents sous-types moléculaires: présentations en imagerie. IMAGERIE DE LA FEMME 2020. [DOI: 10.1016/j.femme.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Ye DM, Wang HT, Yu T. The Application of Radiomics in Breast MRI: A Review. Technol Cancer Res Treat 2020; 19:1533033820916191. [PMID: 32347167 PMCID: PMC7225803 DOI: 10.1177/1533033820916191] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has been a worldwide burden of women's health. Although concerns have been raised for early diagnosis and timely treatment, the efforts are still needed for precision medicine and individualized treatment. Radiomics is a new technology with immense potential to obtain mineable data to provide rich information about the diagnosis and prognosis of breast cancer. In our study, we introduced the workflow and application of radiomics as well as its outlook and challenges based on published studies. Radiomics has the potential ability to differentiate between malignant and benign breast lesions, predict axillary lymph node status, molecular subtypes of breast cancer, tumor response to chemotherapy, and survival outcomes. Our study aimed to help clinicians and radiologists to know the basic information of radiomics and encourage cooperation with scientists to mine data for better application in clinical practice.
Collapse
Affiliation(s)
- Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| | - Hao-Tian Wang
- Dalian Medical University, The First Clinical College, Dalian, Liaoning Province, People’s Republic of China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
38
|
Li J, Mo Y, He B, Gao Q, Luo C, Peng C, Zhao W, Ma Y, Yang Y. Association between MRI background parenchymal enhancement and lymphovascular invasion and estrogen receptor status in invasive breast cancer. Br J Radiol 2019; 92:20190417. [PMID: 31398071 PMCID: PMC6849688 DOI: 10.1259/bjr.20190417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objectives: In magnetic resonance imaging (MRI), background parenchymal enhancement (BPE) is associated with breast cancer risk, but the associations between BPE and clinical characteristics and histological features are unknown. This study aimed to investigate the association between BPE and clinical characteristics (including age, menopausal status, and tumor histological characteristics) in patients with invasive breast cancer. Methods: This was a retrospective study of 163 patients with invasive breast cancer (164 lesions, 1 patient had bilateral cancer) confirmed by surgery and pathological examination, treated between January 2014 and December 2016 at our university (Kunming Medical University). The patients were divided into two groups: extremely minimal and mild enhancement (low BPE group, n = 78) vs moderate and marked enhancement (high BPE group, n = 86). Results: Compared with the low BPE group, the high BPE group showed higher frequencies of patients < 50 years of age (88% vs 38%, p < 0.0001), premenopausal (87% vs 29%, p < 0.0001), T1 staging (35% vs 15%, p = 0.027), Grade II (57% vs 37%, p = 0.03), lymphovascular invasion (83% vs 13%, p < 0.0001), and positive estrogen receptor (ER) (79% vs 42%, p < 0.0001). The Spearman correlation coefficients (r) between BPE and age, menopausal status, lymphovascular invasion, and ER status were −0.521 (p < 0.0001), –0.588 (p < 0.0001), 0.697 (p < 0.0001), and 0.377 (p < 0.0001), respectively. Conclusion: BPE is negatively associated with age and menopausal status, and is positively associated with lymphovascular invasion and positive ER status. Advances in knowledge: BPE is not correlated with T staging and histological classification in patients with invasive breast cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Yin Mo
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Bo He
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Qian Gao
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Chunyan Luo
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Chao Peng
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Wei Zhao
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Yun Ma
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| |
Collapse
|