1
|
Fahrni G, Boccalini S, Lacombe H, de Oliveira F, Houmeau A, Francart F, Villien M, Rotzinger DC, Robert A, Douek P, Si-Mohamed SA. Ultra-high-resolution 40 keV virtual monoenergetic imaging using spectral photon-counting CT in high-risk patients for coronary stenoses. Eur Radiol 2025; 35:3042-3053. [PMID: 39661149 PMCID: PMC12081593 DOI: 10.1007/s00330-024-11237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES To assess the image quality of ultra-high-resolution (UHR) virtual monoenergetic images (VMIs) at 40 keV compared to 70 keV, using spectral photon-counting CT (SPCCT) and dual-layer dual-energy CT (DECT) for coronary computed tomography angiography (CCTA). METHODS AND MATERIALS In this prospective IRB-approved study, 26 high-risk patients were included. CCTA was performed both with an SPCCT in UHR mode and with one of two DECT scanners (iQOn or CT7500) within 3 days. 40 keV and 70 keV VMIs were reconstructed for both modalities. Stenoses, blooming artefacts, and image quality were compared between all four reconstructions. RESULTS Twenty-six patients (4 women [15%]) and 28 coronary stenoses (mean stenosis of 56% ± 16%) were included. 40 keV SPCCT gave an overall higher quality score (5 [5, 5]) than 70 keV SPCCT (5 [4, 5], 40 keV DECT (4 [3, 4]) and 70 keV SPCCT (4 [4, 5]), p < 0.001). Less variability in stenosis measurement was found with SPCCT between 40 keV and 70 keV (bias: -1% ± 3%, LoA: 6%) compared with DECT (-6% ± 8%, LoA 16%). 40 keV SPCCT vs 40 keV DECT showed a -3% ± 6% bias, whereas 40 keV SPCCT vs 70 keV DECT showed a -8% ± 6% bias. From 70 keV to 40 keV, blooming artefacts did not increase with SPCCT (mean +2% ± 5%, p = 0.136) whereas they increased with DECT (mean +7% ± 6%, p = 0.005). CONCLUSION UHR 40 keV SPCCT VMIs outperformed 40 keV and 70 keV DECT VMIs for assessing coronary artery stenoses, with no impairment compared to 70 keV SPCCT VMIs. KEY POINTS Question Use of low virtual mono-energetic images at 40 keV using spectral dual-energy and photon-counting CT systems is not yet established for diagnosing coronary artery stenosis. Findings UHR 40 keV SPCCT enhances diagnostic accuracy in coronary artery assessment. Clinical relevance By combining spectral sensitivity with lower virtual mono-energetic imaging and ultra-high spatial resolution, SPCCT enhances coronary artery assessment, potentially leading to more accurate diagnoses and better patient outcomes in cardiovascular imaging.
Collapse
Affiliation(s)
- Guillaume Fahrni
- Department of Diagnostic and Interventional Radiology, Cardiothoracic and Vascular Division, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Sara Boccalini
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Hugo Lacombe
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Philips Healthcare, Suresnes, France
| | - Fabien de Oliveira
- Department of Radiology, CHU Nîmes, University Montpellier, Medical Imaging Group Nîmes, Nîmes, France
| | - Angèle Houmeau
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
| | - Florie Francart
- Department of Radiology, CHU Nîmes, University Montpellier, Medical Imaging Group Nîmes, Nîmes, France
| | | | - David C Rotzinger
- Department of Diagnostic and Interventional Radiology, Cardiothoracic and Vascular Division, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Robert
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
| | - Philippe Douek
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Salim A Si-Mohamed
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France.
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
2
|
Klambauer K, Lisi C, Moser LJ, Mergen V, Flohr T, Eberhard M, Alkadhi H. Multienergy cardiovascular CT imaging: current state and future. Br J Radiol 2025; 98:321-329. [PMID: 39656967 PMCID: PMC11840172 DOI: 10.1093/bjr/tqae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Multienergy cardiovascular CT imaging can be defined as data acquisition at 2 (dual-energy) or multiple X-ray energies. Multienergy cardiovascular CT imaging provides additional qualitative and quantitative information such as material maps or virtual monoenergetic images, which are supposed to further improve the quality and diagnostic yield of CT. Recently introduced photon-counting detector CT scanners further address some of the challenges and limitations of previous, conventional CT machines, hereby enhancing and extending the applications of CT for cardiovascular imaging. This review summarizes the technical principles of multienergy cardiovascular CT imaging and addresses the optimization of image quality and discusses the various dual-energy-based applications for coronary, valvular, and myocardial imaging. New developments in regard to k-edge imaging and new contrast media for multienergy cardiovascular CT imaging are being also discussed.
Collapse
Affiliation(s)
- Konstantin Klambauer
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Costanza Lisi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Lukas Jakob Moser
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Flohr
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Booz C, Bucolo GM, D'Angelo T, Mazziotti S, Lanzafame LRM, Yel I, Alizadeh LS, Gruenewald LD, Koch V, Martin SS, Dimitrova M, Goekduman A, Vogl TJ, Kaatsch HL, Overhoff D, Waldeck S. Carotid artery assessment in dual-source photon-counting CT: impact of low-energy virtual monoenergetic imaging on image quality, vascular contrast and diagnostic assessability. LA RADIOLOGIA MEDICA 2024; 129:1633-1643. [PMID: 39287697 PMCID: PMC11554704 DOI: 10.1007/s11547-024-01889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Preliminary dual-energy CT studies have shown that low-energy virtual monoenergetic (VMI) + reconstructions can provide superior image quality compared to standard 120 kV CTA series. The purpose of this study is to evaluate the impact of low-energy VMI reconstructions on quantitative and qualitative image quality, vascular contrast, and diagnostic assessability of the carotid artery in patients undergoing photon-counting CTA examinations. MATERIALS AND METHODS A total of 122 patients (67 male) who had undergone dual-source photon-counting CTA scans of the carotid artery were retrospectively analyzed in this study. Standard 120 kV CT images and low-keV VMI series from 40 to 100 keV with an interval of 15 keV were reconstructed. Quantitative analyses included the evaluation of vascular CT numbers, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). CT number measurements were performed in the common, external, and internal carotid arteries. Qualitative analyses were performed by three board-certified radiologists independently using five-point scales to evaluate image quality, vascular contrast, and diagnostic assessability of the carotid artery. RESULTS Mean attenuation, CNR and SNR values were highest in 40 keV VMI reconstructions (HU, 1362.32 ± 457.81; CNR, 33.19 ± 12.86; SNR, 34.37 ± 12.89) followed by 55-keV VMI reconstructions (HU, 736.94 ± 150.09; CNR, 24.49 ± 7.11; SNR, 26.25 ± 7.34); all three mean values at these keV levels were significantly higher compared with the remaining VMI series and standard 120 kV CT series (HU, 154.43 ± 23.69; CNR, 16.34 ± 5.47; SNR, 24.44 ± 7.14) (p < 0.0001). The qualitative analysis showed the highest rating scores for 55 keV VMI reconstructions followed by 40 keV and 70 keV VMI series with a significant difference compared to standard 120 kV CT images series regarding image quality, vascular contrast, and diagnostic assessability of the carotid artery (all comparisons, p < 0.01). CONCLUSIONS Low-keV VMI reconstructions at a level of 40-55 keV significantly improve image quality, vascular contrast, and the diagnostic assessability of the carotid artery compared with standard CT series in photon-counting CTA.
Collapse
Affiliation(s)
- Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Giuseppe M Bucolo
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ludovica R M Lanzafame
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Leona S Alizadeh
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Leon D Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Simon S Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Mirela Dimitrova
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Aynur Goekduman
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Thomas J Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Hanns L Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany
- Department of Radiology and Nuclear Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072, Koblenz, Germany
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
4
|
Steinmetz S, Mercado MAA, Altmann S, Sanner A, Kronfeld A, Frenzel M, Kim D, Groppa S, Uphaus T, Brockmann MA, Othman AE. Impact of deep Learning-enhanced contrast on diagnostic accuracy in stroke CT angiography. Eur J Radiol 2024; 181:111808. [PMID: 39520838 DOI: 10.1016/j.ejrad.2024.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke. METHODS This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as < 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity. RESULTS 102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p < 0.001) and qualitative image analysis (all items p < 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p < 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %]. CONCLUSIONS Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.
Collapse
Affiliation(s)
- Sebastian Steinmetz
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mario Alberto Abello Mercado
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sebastian Altmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Antoine Sanner
- Technical University of Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marius Frenzel
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Dongok Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Sergiu Groppa
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
5
|
D'Angelo T, Mastrodicasa D, Lanzafame LRM, Yel I, Koch V, Gruenewald LD, Sharma SP, Ascenti V, Micari A, Blandino A, Vogl TJ, Mazziotti S, Budde RPJ, Booz C. Optimization of window settings for coronary arteries assessment using spectral CT-derived virtual monoenergetic imaging. LA RADIOLOGIA MEDICA 2024; 129:999-1007. [PMID: 38935247 PMCID: PMC11252218 DOI: 10.1007/s11547-024-01835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To determine the optimal window setting for virtual monoenergetic images (VMI) reconstructed from dual-layer spectral coronary computed tomography angiography (DE-CCTA) datasets. MATERIAL AND METHODS 50 patients (30 males; mean age 61.1 ± 12.4 years who underwent DE-CCTA from May 2021 to June 2022 for suspected coronary artery disease, were retrospectively included. Image quality assessment was performed on conventional images and VMI reconstructions at 70 and 40 keV. Objective image quality was assessed using contrast-to-noise ratio (CNR). Two independent observers manually identified the best window settings (B-W/L) for VMI 70 and VMI 40 visualization. B-W/L were then normalized with aortic attenuation using linear regression analysis to obtain the optimized W/L (O-W/L) settings. Additionally, subjective image quality was evaluated using a 5-point Likert scale, and vessel diameters were measured to examine any potential impact of different W/L settings. RESULTS VMI 40 demonstrated higher CNR values compared to conventional and VMI 70. B-W/L settings identified were 1180/280 HU for VMI 70 and 3290/900 HU for VMI 40. Subsequent linear regression analysis yielded O-W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40. VMI 40 O-W/L received the highest scores for each parameter compared to conventional (all p < 0.0027). Using O-W/L settings for VMI 70 and VMI 40 did not result in significant differences in vessel measurements compared to conventional images. CONCLUSION Optimization of VMI requires adjustments in W/L settings. Our results recommend W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University School of Medicine, 453 Quarry Rd, MC 5659, Palo Alto, CA 94304-5659, USA
| | - Ludovica R M Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Leon D Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Simran P Sharma
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Velio Ascenti
- Department of Radiology, Policlinico Universitario Ospedale Maggiore, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Antonino Micari
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Thomas J Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
6
|
Wolf EV, Halfmann MC, Varga-Szemes A, Fink N, Kloeckner R, Bockius S, Allmendinger T, Hagenauer J, Koehler T, Kreitner KF, Schoepf UJ, Münzel T, Düber C, Gori T, Yang Y, Hell MM, Emrich T. Photon-Counting Detector CT Virtual Monoenergetic Images for Coronary Artery Stenosis Quantification: Phantom and In Vivo Evaluation. AJR Am J Roentgenol 2024; 222:e2330481. [PMID: 38197760 DOI: 10.2214/ajr.23.30481] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.
Collapse
Affiliation(s)
- Elias V Wolf
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Nicola Fink
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
- Department of Radiology, University Hospital, LMU Munich, München, Germany
| | - Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany
| | - Stefanie Bockius
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | | | | | | | - Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Thomas Münzel
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Düber
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Tommaso Gori
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yang Yang
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Michaela M Hell
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
7
|
Böttcher B, Zsarnoczay E, Varga-Szemes A, Schoepf UJ, Meinel FG, van Assen M, De Cecco CN. Dual-Energy Computed Tomography in Cardiac Imaging. Radiol Clin North Am 2023; 61:995-1009. [PMID: 37758366 DOI: 10.1016/j.rcl.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography (DECT) acquires images using two energy spectra and offers a variation of reconstruction techniques for improved cardiac imaging. Virtual monoenergetic images decrease artifacts improving coronary plaque and stent visualization. Further, contrast attenuation is increased allowing significant reduction of contrast dose. Virtual non-contrast reconstructions enable coronary artery calcium scoring from contrast-enhanced scans. DECT provides advanced plaque imaging with detailed analysis of plaque components, indicating plaque stability. Extracellular volume assessment using DECT offers noninvasive detection of myocardial fibrosis. This review aims to outline the current cardiac applications of DECT, summarize recent literature, and discuss their findings.
Collapse
Affiliation(s)
- Benjamin Böttcher
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Uwe Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging and Imaging Informatics, Department of Radiology and Imaging Sciences, Emory University Hospital, Emory Healthcare, Inc. 1365 Clifton Road NE, Suite - AT503, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Pinos D, Griffith J, Emrich T, Schoepf UJ, O'Doherty J, Zsarnoczay E, Fink N, Vecsey-Nagy M, Suranyi P, Tesche C, Aquino GJ, Varga-Szemes A, Brandt V. Intra-individual comparison of image quality of the coronary arteries between photon-counting detector and energy-integrating detector CT systems. Eur J Radiol 2023; 166:111008. [PMID: 37542817 DOI: 10.1016/j.ejrad.2023.111008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE To intra-individually compare the objective and subjective image quality of coronary computed tomography angiography (CCTA) between photon-counting detector CT (PCD-CT) and energy-integrating detector CT (EID-CT). METHOD Consecutive patients undergoing clinically indicated CCTA on an EID-CT system were prospectively enrolled for a research CCTA performed on a PCD-CT system within 30 days. Polychromatic images were reconstructed for both EID- and PCD-CT, while virtual monoenergetic images (VMI) were generated at 40, 45, 50, 55, 60 and 70 keV for PCD-CT. Two blinded readers calculated contrast-to-noise ratio (CNR) for each major coronary artery and rated image noise, vessel attenuation, vessel sharpness, and overall quality on a 1-5 Likert scale. Patients were then stratified by body mass index (BMI) [high (>30 kg/m2) vs low (<30 kg/m2)] for subgroup analysis. RESULTS A total of 20 patients (67.5 ± 9.0 years, 75% male) were included in the study. Compared with EID-CT, coronary artery CNR values from PCD-CT monoenergetic and polychromatic reconstructions were all significantly higher than CNR values from EID-CT, with incrementally greater differences in obese subjects (all p < 0.008). Subjective image noise and sharpness were also significantly higher for all VMI reconstructions compared to EID-CT (all p < 0.008). All subjective scores were significantly higher for 55, 60, and 70 keV PCD-CT than EID-CT values (all p < 0.05). CONCLUSIONS The improved objective and subjective image quality of PCD-CT compared to EID-CT may provide better visualization of the coronary arteries for a wide array of patients, especially those with a high BMI.
Collapse
Affiliation(s)
- Daniel Pinos
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Joseph Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz (1 Langenbeckstraße, 55131 Mainz, Germany); German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany (1 Langenbeckstraße, 55131 Mainz, Germany)
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA).
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Siemens Medical Solutions USA (40 Liberty Boulevard, 19355 Malvern, PA, USA)
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Medical Imaging Center, Semmelweis University (Korányi Sándor utca 2, Budapest, 1083, Hungary)
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Radiology, University Hospital Munich, LMU Munich, Munich, Germany (15 Marchioninistr., 81377 München, Germany)
| | - Milan Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University (18 Hataror ut, 1122 Budapest, Hungary)
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Christian Tesche
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Cardiology, Clinic Augustinum Munich (16 Wolkerweg, 81375 München, Germany); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University (Lazarettstraße 36, 80636 München, Germany)
| | - Gilberto J Aquino
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Verena Brandt
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Cardiology and Angiology, Robert-Bosch-Hospital (Auerbachstraße 110, 70376 Stuttgart, Germany)
| |
Collapse
|
9
|
D’Angelo T, Lanzafame LRM, Micari A, Blandino A, Yel I, Koch V, Gruenewald LD, Vogl TJ, Booz C, Bucolo GM, Cannizzaro MT, Ascenti G, Mazziotti S. Improved Coronary Artery Visualization Using Virtual Monoenergetic Imaging from Dual-Layer Spectral Detector CT Angiography. Diagnostics (Basel) 2023; 13:2675. [PMID: 37627934 PMCID: PMC10453590 DOI: 10.3390/diagnostics13162675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Background: To evaluate if coronary CT angiography (CCTA) monoenergetic reconstructions, obtained with a dual-layer spectral detector computed tomography (DLCT) system, offer improved image quality compared with 120 kVp conventional images without affecting the quantitative assessment of coronary stenoses. Methods: Fifty CCTA datasets (30 men; mean age: 61.6 ± 12.3 years) acquired with a DLCT system were reconstructed using virtual monoenergetic images (VMI) from 40 to 100 keV with 10 keV increment and compared with conventional images. An analysis of objective image quality was performed, evaluating the signal- and contrast-to-noise ratio. For the subjective assessment, two readers used a 5-point Likert scoring system to evaluate sharpness, noise, demarcation of coronary plaques, vascular contrast, and an overall score. Furthermore, coronary stenoses were analyzed for each vessel to describe the diagnostic agreement between monoenergetic images and conventional images. Results: The objective image analysis showed that all reconstructions from 70 keV to 40 keV show higher SNR (from 61.33 ± 12.46 to 154.22 ± 42.91, respectively) and CNR (from 51.45 ± 11.19 to 135.63 ± 39.38, respectively) compared with conventional images (all p < 0.001). The 40 keV monoenergetic images obtained the best average score for sharpness, vascular contrast, and for the overall impression (all with p < 0.001). The detection and grading of stenoses of the coronary arteries with conventional and monoenergetic images at 70 keV and 40 keV showed an overall excellent interobserver agreement (k= 0.81 [0.72-0.91]). Conclusions: The 40 keV virtual monoenergetic images obtained with a DLCT system allow the objective and subjective image quality of coronary CT angiography to be improved.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Antonino Micari
- Department of Clinical and Experimental Medicine, DIMED, University Hospital Messina, 98124 Messina, Italy;
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Leon D. Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Giuseppe M. Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Maria Teresa Cannizzaro
- Radiology Unit (CAST), University Hospital Catania, “Policlinico G. Rodolico–San Marco”, 95123 Catania, Italy;
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| |
Collapse
|
10
|
Tore D, Faletti R, Gaetani C, Bozzo E, Biondo A, Carisio A, Menchini F, Miccolis M, Papa FP, Trovato M, Fonio P, Gatti M. Cardiac magnetic resonance of hypertrophic heart phenotype: A review. Heliyon 2023; 9:e17336. [PMID: 37441401 PMCID: PMC10333467 DOI: 10.1016/j.heliyon.2023.e17336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertrophic heart phenotype is characterized by an abnormal left ventricular (LV) thickening. A hypertrophic phenotype can develop as adaptive response in many different conditions such as aortic stenosis, hypertension, athletic training, infiltrative heart muscle diseases, storage disorders and metabolic disorders. Hypertrophic cardiomyopathy (HCM) is the most frequent primary cardiomyopathy (CMP) and a genetical cause of cardiac hypertrophy. It requires the exclusion of any other cause of LV hypertrophy. Cardiac magnetic resonance (CMR) is a comprehensive imaging technique that allows a detailed evaluation of myocardial diseases. It provides reproducible measurements and myocardial tissue characterization. In clinical practice CMR is increasingly used to confirm the presence of ventricular hypertrophy, to detect the underlying cause of the phenotype and more recently as an efficient prognostic tool. This article aims to provide a detailed overview of the applications of CMR in the setting of hypertrophic heart phenotype and its role in the diagnostic workflow of such condition.
Collapse
Affiliation(s)
- Davide Tore
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Clara Gaetani
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Elena Bozzo
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Andrea Biondo
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Andrea Carisio
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesca Menchini
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Maria Miccolis
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesco Pio Papa
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Martina Trovato
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Estler A, Nikolaou K, Schönberg SO, Bamberg F, Froelich MF, Tollens F, Verloh N, Weiss J, Horger M, Hagen F. Is There Still a Role for Two-Phase Contrast-Enhanced CT and Virtual Monoenergetic Images in the Era of Photon-Counting Detector CT? Diagnostics (Basel) 2023; 13:diagnostics13081454. [PMID: 37189555 DOI: 10.3390/diagnostics13081454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND To compare the diagnostic characteristics between arterial phase imaging versus portal venous phase imaging, applying polychromatic T3D images and low keV virtual monochromatic images using a 1st generation photon-counting CT detector, of CT in patients with hepatocellular carcinoma (HCC). METHODS Consecutive patients with HCC, with a clinical indication for CT imaging, were prospectively enrolled. Virtual monoenergetic images (VMI) were reconstructed at 40 to 70 keV for the PCD-CT. Two independent, blinded radiologists counted all hepatic lesions and quantified their size. The lesion-to-background ratio was quantified for both phases. SNR and CNR were determined for T3D and low VMI images; non-parametric statistics were used. RESULTS Among 49 oncologic patients (mean age 66.9 ± 11.2 years, eight females), HCC was detected in both arterial and portal venous scans. The signal-to-noise ratio, the CNR liver-to-muscle, the CNR tumor-to-liver, and CNR tumor-to-muscle were 6.58 ± 2.86, 1.40 ± 0.42, 1.13 ± 0.49, and 1.53 ± 0.76 in the arterial phase and 5.93 ± 2.97, 1.73 ± 0.38, 0.79 ± 0.30, and 1.36 ± 0.60 in the portal venous phase with PCD-CT, respectively. There was no significant difference in SNR between the arterial and portal venous phases, including between "T3D" and low keV images (p > 0.05). CNRtumor-to-liver differed significantly between arterial and portal venous contrast phases (p < 0.005) for both "T3D" and all reconstructed keV levels. CNRliver-to-muscle and CNRtumor-to-muscle did not differ in either the arterial or portal venous contrast phases. CNRtumor-to-liver increased in the arterial contrast phase with lower keV in addition to SD. In the portal venous contrast phase, CNRtumor-to-liver decreased with lower keV; whereas, CNRtumor-to-muscle increased with lower keV in both arterial and portal venous contrast phases. CTDI and DLP mean values for the arterial upper abdomen phase were 9.03 ± 3.59 and 275 ± 133, respectively. CTDI and DLP mean values for the abdominal portal venous phase were 8.75 ± 2.99 and 448 ± 157 with PCD-CT, respectively. No statistically significant differences were found concerning the inter-reader agreement for any of the (calculated) keV levels in either the arterial or portal-venous contrast phases. CONCLUSIONS The arterial contrast phase imaging provides higher lesion-to-background ratios of HCC lesions using a PCD-CT; especially, at 40 keV. However, the difference was not subjectively perceived as significant.
Collapse
Affiliation(s)
- Arne Estler
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Fabian Tollens
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Florian Hagen
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| |
Collapse
|
12
|
Sartoretti T, McDermott M, Mergen V, Euler A, Schmidt B, Jost G, Wildberger JE, Alkadhi H. Photon-counting detector coronary CT angiography: impact of virtual monoenergetic imaging and iterative reconstruction on image quality. Br J Radiol 2023; 96:20220466. [PMID: 36633005 PMCID: PMC9975359 DOI: 10.1259/bjr.20220466] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To assess the impact of low kilo-electronvolt (keV) virtual monoenergetic image (VMI) energies and iterative reconstruction on image quality of clinical photon-counting detector coronary CT angiography (CCTA). METHODS CCTA with PCD-CT (prospective ECG-triggering, 120 kVp, automatic tube current modulation) was performed in a high-end cardiovascular phantom with dynamic flow, pulsatile heart motion, and including different calcified plaques with various stenosis grades and in 10 consecutive patients. VMI at 40,50,60 and 70 keV were reconstructed without (QIR-off) and with all quantum iterative reconstruction (QIR) levels (QIR-1 to 4). In the phantom, noise power spectrum, vessel attenuation, contrast-to-noise-ratio (CNR), and vessel sharpness were measured. Two readers graded stenoses in the phantom and graded overall image quality, subjective noise, vessel sharpness, vascular contrast, and coronary artery plaque delineation on 5-point Likert scales in patients. RESULTS In the phantom, noise texture was only slightly affected by keV and QIR while noise increased by 69% from 70 keV QIR-4 to 40 keV QIR-off. Reconstructions at 40 keV QIR-4 exhibited the highest CNR (46.1 ± 1.8), vessel sharpness (425 ± 42 ∆HU/mm), and vessel attenuation (1098 ± 14 HU). Stenosis measurements were not affected by keV or QIR level (p > 0.12) with an average error of 3%/6% for reader 1/reader 2, respectively. In patients, across all subjective categories and both readers, 40 keV QIR-3 and QIR-4 images received the best scores (p < 0.001). CONCLUSION Forty keV VMI with QIR-4 significantly improved image quality of CCTA with PCD-CT. ADVANCES IN KNOWLEDGE PCD-CT at 40 keV and QIR-4 improves image quality of CCTA.
Collapse
Affiliation(s)
| | | | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Wang Y, Chen X, Lu G, Su Y, Yang L, Shi G, Zhang F, Zhuo J, Duan X, Hu H. Improving the Visualization of the Adrenal Veins Using Virtual Monoenergetic Images from Dual-Energy Computed Tomography before Adrenal Venous Sampling. Tomography 2023; 9:485-496. [PMID: 36960999 PMCID: PMC10037600 DOI: 10.3390/tomography9020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: This study explored the optimal energy level in advanced virtual monoenergetic images (VMI+) from dual-energy computed tomography angiography (DE-CTA) for adrenal veins visualization before adrenal venous sampling (AVS). (2) Methods: Thirty-nine patients were included in this prospective single-center study. The CT value, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in both adrenal veins and abdominal solid organs and were then compared between VMI+ within the range of 40-80 kiloelectron volt (keV). The visualization rate of the adrenal veins and the overall image quality of solid organs were subjectively compared among different keV VMI+. The AVS success rate was recorded for 20 patients. (3) Results: For the adrenal veins, 40 keV VMI+ had the peak CT value, noise and CNR (p < 0.05). Subjectively, the visualization rate was the highest at 40 keV (100% for the right adrenal vein, and 97.4% for the left adrenal vein) (p < 0.05). For solid organs, the CT value, noise and CNR at 50 keV were lower than those at 40 keV (p < 0.05), but the SNR was similar between 40 keV and 50 keV. The overall subjective image quality of solid organs at 50 keV was the best (p < 0.05). The AVS success rate was 95%. (4) Conclusions: For VMI+, 40 keV was the preferential energy level to obtain a high visualization rate of the adrenal veins and a high success rate of AVS, while 50 keV was the favorable energy level for the depiction of abdominal organs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xiaohong Chen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Guoxiong Lu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yun Su
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Lingjie Yang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Guangzi Shi
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiayi Zhuo
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| |
Collapse
|
14
|
D’Angelo T, Arico FM, Broccio L, Ascenti G, Mazziotti S, Booz C, Martin SS, Yel I, Lanzafame LRM, Blandino A, Sofia C. Multi-Contrast Differentiation by Dual-Energy Spectral CT Angiography in a Patient with Pulmonary Barium Granulomas. Diagnostics (Basel) 2023; 13:diagnostics13050832. [PMID: 36899976 PMCID: PMC10000742 DOI: 10.3390/diagnostics13050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Barium inhalation usually relates to accidental aspiration during radiological procedures with an oral contrast agent. When present, barium lung deposits are visible as high-density opacities on chest X-ray or CT scan due to high atomic number, and they may be indistinguishable from calcifications. Dual-layer spectral CT has shown good material differentiation capabilities, due to its increased high-Z element range and smaller spectral separation between low- and high-energy spectral data. We present the case of a 17-year-old female with a history of tracheoesophageal fistula, who underwent chest CT angiography on a dual-layer spectral platform. Despite the close Z numbers and K-edge energy levels of the two different contrast materials, spectral CT was able to identify barium lung deposits from a previous swallowing study and to clearly distinguish them from calcium and the surrounding iodine-containing structures.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Correspondence: (T.D.); (F.M.A.)
| | - Francesco M. Arico
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Correspondence: (T.D.); (F.M.A.)
| | - Lydia Broccio
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon S. Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Carmelo Sofia
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| |
Collapse
|
15
|
D’Angelo T, Vizzari G, Lanzafame LRM, Pergolizzi F, Mazziotti S, Gaeta M, Costa F, Di Bella G, Vogl TJ, Booz C, Micari A, Blandino A. Spectral CT Imaging of Prosthetic Valve Embolization after Transcatheter Aortic Valve Implantation. Diagnostics (Basel) 2023; 13:678. [PMID: 36832165 PMCID: PMC9955456 DOI: 10.3390/diagnostics13040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Transcatheter heart valve (THV) embolization is a rare complication of transcatheter aortic valve implantation (TAVI) generally caused by malpositioning, sizing inaccuracies and pacing failures. The consequences are related to the site of embolization, ranging from a silent clinical picture when the device is stably anchored in the descending aorta to potentially fatal outcomes (e.g., obstruction of flow to vital organs, aortic dissection, thrombosis, etc.). Here, we present the case of a 65-year-old severely obese woman affected by severe aortic valve stenosis who underwent TAVI complicated by embolization of the device. The patient underwent spectral CT angiography that allowed for improved image quality by means of virtual monoenergetic reconstructions, permitting optimal pre-procedural planning. She was successfully re-treated with implantation of a second prosthetic valve a few weeks later.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Giampiero Vizzari
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Federica Pergolizzi
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Francesco Costa
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Gianluca Di Bella
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Antonio Micari
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| |
Collapse
|
16
|
Lanzafame LRM, Bucolo GM, Muscogiuri G, Sironi S, Gaeta M, Ascenti G, Booz C, Vogl TJ, Blandino A, Mazziotti S, D’Angelo T. Artificial Intelligence in Cardiovascular CT and MR Imaging. Life (Basel) 2023; 13:507. [PMID: 36836864 PMCID: PMC9968221 DOI: 10.3390/life13020507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The technological development of Artificial Intelligence (AI) has grown rapidly in recent years. The applications of AI to cardiovascular imaging are various and could improve the radiologists' workflow, speeding up acquisition and post-processing time, increasing image quality and diagnostic accuracy. Several studies have already proved AI applications in Coronary Computed Tomography Angiography and Cardiac Magnetic Resonance, including automatic evaluation of calcium score, quantification of coronary stenosis and plaque analysis, or the automatic quantification of heart volumes and myocardial tissue characterization. The aim of this review is to summarize the latest advances in the field of AI applied to cardiovascular CT and MR imaging.
Collapse
Affiliation(s)
- Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe M. Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, 20149 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy
| | - Sandro Sironi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
17
|
D’Angelo T, Martin S, Micari A, Booz C, Steyer A, Blandino A, Lanzafame LR, Koch V, Ascenti G, Mazziotti S. Coronary angiography using spectral detector dual-energy CT: is it the time to assess myocardial first-pass perfusion? Eur Radiol Exp 2022; 6:60. [PMID: 36480065 PMCID: PMC9732170 DOI: 10.1186/s41747-022-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
Coronary computed tomography angiography (CCTA) represents a common approach to the diagnostic workup of patients with suspected coronary artery disease. Technological development has recently allowed the integration of conventional CCTA information with spectral data. Spectral CCTA used in clinical routine may allow for improving CCTA diagnostic performance by measuring myocardial iodine distribution as a marker of first-pass perfusion, thus providing additional functional information about coronary artery disease.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy ,grid.5645.2000000040459992XDepartment of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Simon Martin
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Antonino Micari
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Christian Booz
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Alexandra Steyer
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Alfredo Blandino
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Ludovica R. Lanzafame
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Vitali Koch
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Giorgio Ascenti
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Silvio Mazziotti
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| |
Collapse
|
18
|
Lanzafame LRM, Carerj ML, Rizzo G, Minutoli F, Bucolo GM, Irrera N, Muscogiuri G, Sironi S, Blandino A, D’Angelo T. Multimodality Imaging Evaluation of Coronary IgG4-Related Disease: A "Tumor-Like" Cardiac Lesion. Diagnostics (Basel) 2022; 12:diagnostics12112814. [PMID: 36428873 PMCID: PMC9689228 DOI: 10.3390/diagnostics12112814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a systemic immune-mediated fibro-inflammatory disorder. Coronary IgG4-RD has been scarcely reported and may present as "tumor-like" lesions. These pseudo-masses may be underdiagnosed mainly due to a vague clinical picture that can vary from complete lack of symptoms to acute coronary syndrome or sudden cardiac death. Early recognition of coronary IgG4-RD is essential to monitor disease activity and prevent life-threatening complications. We report a comprehensive non-invasive imaging evaluation of a patient affected by coronary IgG4-RD, which was diagnosed as an incidental finding during routine pre-laparoscopic cholecystectomy checkup. Non-invasive imaging revealed the presence of a peri-coronary soft-tissue mass that was stable at 12 months follow-up.
Collapse
Affiliation(s)
- Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Maria Ludovica Carerj
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Giovanna Rizzo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Fabio Minutoli
- Nuclear Medicine Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| | - Giuseppe M. Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Natasha Irrera
- Pharmacology Unit, DIMED Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, 20149 Milan, Italy
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Seo JY, Joo I, Yoon JH, Kang HJ, Kim S, Kim JH, Ahn C, Lee JM. Deep learning-based reconstruction of virtual monoenergetic images of kVp-switching dual energy CT for evaluation of hypervascular liver lesions: Comparison with standard reconstruction technique. Eur J Radiol 2022; 154:110390. [PMID: 35724579 DOI: 10.1016/j.ejrad.2022.110390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate clinical applicability of deep learning(DL)-based reconstruction of virtual monoenergetic images(VMIs) of arterial phase liver CT obtained by rapid kVp-switching dual-energy CT for evaluation of hypervascular liver lesions. MATERIALS AND METHODS We retrospectively included 109 patients who had available late arterial phase liver CT images of the liver obtained with a rapid switching kVp DECT scanner for suspicious intra-abdominal malignancies. Two VMIs of 70 keV and 40 keV were reconstructed using adaptive statistical iterative reconstruction (ASiR-V) for arterial phase scans. VMIs at 40 keV were additionally reconstructed with a vendor-agnostic DL-based reconstruction technique (ClariCT.AI, ClariPi, DL 40 keV). Qualitative, quantitative image quality and subjective diagnostic acceptability were compared according to reconstruction techniques. RESULTS In qualitative analysis, DL 40 keV images showed less image noise (4.55 vs 3.11 vs 3.95, p < 0.001), better image sharpness (4.75 vs 4.16 vs 4.3, p < 0.001), better image contrast (4.98 vs 4.72 vs 4.19, p < 0.017), better lesion conspicuity (4.61 vs 4.23 vs 3.4, p < 0.001) and diagnostic acceptability (4.59 vs 3.88 vs 4.09, p < 0.001) compared with ASiR-V 40 keV or 70 keV image sets. In quantitative analysis, DL 40 keV significantly reduced image noise relative to ASiR-V 40 keV images (49.9%, p < 0.001) and ASiR-V 70 keV images (85.2%, p = 0.012). DL 40 keV images showed significantly higher CNRlesion to the liver and SNRliver than ASiR-V 40 keV image and 70 keV images (p < 0.001). CONCLUSION DL-based reconstruction of 40 keV images using vendor-agnostic software showed greater noise reduction, better lesion conspicuity, image contrast, image sharpness, and higher overall image diagnostic acceptability than ASiR for 40 keV or 70 keV images in patients with hypervascular liver lesions.
Collapse
Affiliation(s)
- June Young Seo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sewoo Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea; Research Institute, ClariPi, Seoul, Republic of Korea
| | - Chulkyun Ahn
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Research Institute, ClariPi, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Muscogiuri G, Guglielmo M, Serra A, Gatti M, Volpato V, Schoepf UJ, Saba L, Cau R, Faletti R, McGill LJ, De Cecco CN, Pontone G, Dell’Aversana S, Sironi S. Multimodality Imaging in Ischemic Chronic Cardiomyopathy. J Imaging 2022; 8:jimaging8020035. [PMID: 35200737 PMCID: PMC8877428 DOI: 10.3390/jimaging8020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemic chronic cardiomyopathy (ICC) is still one of the most common cardiac diseases leading to the development of myocardial ischemia, infarction, or heart failure. The application of several imaging modalities can provide information regarding coronary anatomy, coronary artery disease, myocardial ischemia and tissue characterization. In particular, coronary computed tomography angiography (CCTA) can provide information regarding coronary plaque stenosis, its composition, and the possible evaluation of myocardial ischemia using fractional flow reserve CT or CT perfusion. Cardiac magnetic resonance (CMR) can be used to evaluate cardiac function as well as the presence of ischemia. In addition, CMR can be used to characterize the myocardial tissue of hibernated or infarcted myocardium. Echocardiography is the most widely used technique to achieve information regarding function and myocardial wall motion abnormalities during myocardial ischemia. Nuclear medicine can be used to evaluate perfusion in both qualitative and quantitative assessment. In this review we aim to provide an overview regarding the different noninvasive imaging techniques for the evaluation of ICC, providing information ranging from the anatomical assessment of coronary artery arteries to the assessment of ischemic myocardium and myocardial infarction. In particular this review is going to show the different noninvasive approaches based on the specific clinical history of patients with ICC.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
- Correspondence: ; Tel.: +39-329-404-9840
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, 3584 Utrecht, The Netherlands;
| | - Alessandra Serra
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy;
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Liam J. McGill
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
| | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie—ASL Napoli 2 Nord, 80078 Pozzuoli, Italy;
| | - Sandro Sironi
- School of Medicine and Post Graduate School of Diagnostic Radiology, University of Milano-Bicocca, 20126 Milan, Italy;
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
21
|
Zeng Y, Geng D, Zhang J. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications. Quant Imaging Med Surg 2021; 11:4627-4643. [PMID: 34737929 DOI: 10.21037/qims-20-1196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
The third-generation dual-source computed tomography (DSCT) is among the most advanced imaging methods. It employs noise-optimized virtual monoenergetic imaging (VMI+) technology. It uses the frequency-split method to extract high-contrast image information from low-energy images and low-noise information from images reconstructed at an optimal energy level, combining them to obtain the final image with improved quality. This review is the first to summarize the results of clinical studies that primarily and recently evaluated the VMI+ technique based on tumor, blood vessel, and other lesion classification. We aim to assist radiologists in quickly selecting the appropriate energy level when performing image reconstruction for superior image quality in clinical work and providing several ideas for future scientific research of the VMI+ technique. Presently, VMI+ reconstruction is mostly used for images of various tumors or blood vessels, including coronary plaques, coronary stents, deep vein thromboses, pulmonary embolisms (PEs), active arterial hemorrhages, and endoleaks after endovascular aneurysm repair. In addition, VMI+ has been used for imaging children's heads, liver lesions, pancreatic lacerations, and reducing metal artifacts. Regarding the reconstruction at the optimal energy level, the VMI+ technique yielded a higher image quality than the pre-optimized virtual monoenergetic imaging (VMI) technique and single-energy CT. Moreover, either low concentrations of contrast medium or low iodine injection rates can be applied before VMI+ reconstruction at a low-energy level to reduce contrast agent-related kidney injury risk. After reconstructing an image at the optimal energy level, both the image's window width and level can also be adjusted to improve the image effect's reach and diagnosis suitability. To improve image quality and lesion-imaging clarity and reduce the use of contrast agents, VMI+ reconstruction technology has been applied clinically, in which the selection of energy level is the key to the whole reconstruction process. Our review summarizes these optimal levels for radiologists' reference and suggests new ideas for the direction of future VMI+ research.
Collapse
Affiliation(s)
- Yanwei Zeng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| |
Collapse
|
22
|
D'Angelo T, Albrecht MH, Caudo D, Mazziotti S, Vogl TJ, Wichmann JL, Martin S, Yel I, Ascenti G, Koch V, Cicero G, Blandino A, Booz C. Virtual non-calcium dual-energy CT: clinical applications. Eur Radiol Exp 2021; 5:38. [PMID: 34476640 PMCID: PMC8413416 DOI: 10.1186/s41747-021-00228-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema. Its main advantage is the ability to substantially increase the image contrast of structures that are usually covered with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic, inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton. Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the clinical impact of this technique, which goes beyond the sole improvement in image quality.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Moritz H Albrecht
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Danilo Caudo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Silvio Mazziotti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Thomas J Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julian L Wichmann
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simon Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Giuseppe Cicero
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Kirkbride RR, Larkin E, Tuttle MK, Nicholson MD, Jiang BG, Liubauskas R, Matos JD, Gavin M, Litmanovich DE. Quality and diagnostic performance of coronary computed tomography angiogram (CCTA): A comparison between pre-liver and pre-kidney transplant patients. Eur J Radiol 2021; 143:109886. [PMID: 34412010 DOI: 10.1016/j.ejrad.2021.109886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Assess and compare the quality and diagnostic performance of CCTA between pre-liver and pre-kidney transplant patients, and gauge impact of CCTA on ICA requirements. METHODS Patients without known coronary artery disease (CAD) were selected for CCTA if considered high-risk or after abnormal stress testing. All pre-liver and pre-kidney CCTAs between March 2018 and August 2020 were retrospectively included. CCTA quality was qualitatively graded as excellent/good/fair/poor, and CAD graded as < or ≥50% stenosis. Heart rate, coronary artery calcium (CAC) scores, and fractional flow reserve CT (FFRCT) results were collected. CAD stenosis was graded on invasive coronary angiogram (ICA) images, with ≥50% stenosis defined as significant. RESULTS 162 pre-transplant patients (91 pre-liver, 71 pre-kidney). Pre-kidney patients had poorer CCTA quality (p = 0.04) and higher heart rate (median: 65 bpm vs 60 bpm, p < 0.001). Out of 147 diagnostic CCTAs (pre-liver: 84, pre-kidney: 63), 73 (49.7%) had a ≥50% stenosis (pre-liver: 38 (45.2%), pre-kidney:35 (55.6%)). 12/38 (31.6%) had a significantly reduced FFRCT, and 19/53 (35.8%) had ≥50% stenosis on ICA. Among patients whose CCTA was diagnostic and had ICA, stenosis severity was concordant in 10/23 (43.5%) pre-liver and 10/25 (40%) pre-kidney patients. All discordant cases had stenosis 'over-called' on CCTA. CONCLUSION Diagnostic-quality CCTAs in high-risk pre-transplant patients are achievable and can greatly reduce ICA requirements by excluding significant CAD. CCTA quality is poorer in pre-kidney transplant patients compared to pre-liver, possibly due to higher heart rate.
Collapse
Affiliation(s)
- Rachael R Kirkbride
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emily Larkin
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark K Tuttle
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael D Nicholson
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Brian G Jiang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rokas Liubauskas
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jason D Matos
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Gavin
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Diana E Litmanovich
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Lim HJ, Hwang JH, Kim JH, Park S, Lee KH, Park SH. Fistula from right and left coronary arteries to pulmonary artery: Coronary CT angiography and coronary angiography findings. Radiol Case Rep 2021; 16:1790-1793. [PMID: 34025888 PMCID: PMC8121624 DOI: 10.1016/j.radcr.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Coronary artery fistula is an abnormal communication between the coronary artery and either the cardiac chamber or the great vessel. In particular, the coronary-to-pulmonary artery fistula can be supplied by either one or both coronary arteries and drains to the pulmonary trunk. We report a unique case of fistula originating from both coronary arteries and draining into both sinuses of the main pulmonary artery in a 57-year-old female who experienced chronic chest pain and palpitation. Dilated and tortuous fistulas were found in coronary angiography and coronary computed tomography angiography examinations. To aid early diagnosis and clinical management, radiologists should be aware of the characteristic radiologic findings.
Collapse
|
25
|
Gupta A, Kikano EG, Bera K, Baruah D, Saboo SS, Lennartz S, Hokamp NG, Gholamrezanezhad A, Gilkeson RC, Laukamp KR. Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians. Eur J Radiol Open 2021; 8:100324. [PMID: 33532519 PMCID: PMC7822965 DOI: 10.1016/j.ejro.2021.100324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in dual-energy imaging techniques, dual-energy subtraction radiography (DESR) and dual-energy CT (DECT), offer new and useful additional information to conventional imaging, thus improving assessment of cardiothoracic abnormalities. DESR facilitates detection and characterization of pulmonary nodules. Other advantages of DESR include better depiction of pleural, lung parenchymal, airway and chest wall abnormalities, detection of foreign bodies and indwelling devices, improved visualization of cardiac and coronary artery calcifications helping in risk stratification of coronary artery disease, and diagnosing conditions like constrictive pericarditis and valvular stenosis. Commercially available DECT approaches are classified into emission based (dual rotation/spin, dual source, rapid kilovoltage switching and split beam) and detector-based (dual layer) systems. DECT provide several specialized image reconstructions. Virtual non-contrast images (VNC) allow for radiation dose reduction by obviating need for true non contrast images, low energy virtual mono-energetic images (VMI) boost contrast enhancement and help in salvaging otherwise non-diagnostic vascular studies, high energy VMI reduce beam hardening artifacts from metallic hardware or dense contrast material, and iodine density images allow quantitative and qualitative assessment of enhancement/iodine distribution. The large amount of data generated by DECT can affect interpreting physician efficiency but also limit clinical adoption of the technology. Optimization of the existing workflow and streamlining the integration between post-processing software and picture archiving and communication system (PACS) is therefore warranted.
Collapse
Key Words
- AI, artificial intelligence
- BT, blalock-taussig
- CAD, computer-aided detection
- CR, computed radiography
- DECT, dual-energy computed tomography
- DESR, dual-energy subtraction radiography
- Dual energy CT
- Dual energy radiography
- NIH, national institute of health
- NPV, negative predictive value
- PACS, picture archiving and communication system
- PCD, photon-counting detector
- PET, positron emission tomography
- PPV, positive predictive value
- Photoelectric effect
- SNR, signal to noise ratio
- SPECT, single photon emission computed tomography
- SVC, superior vena cava
- TAVI, transcatheter aortic valve implantation
- TNC, true non contrast
- VMI, virtual mono-energetic images
- VNC, virtual non-contrast images
- eGFR, estimated glomerular filtration rate
- kV, kilo volt
- keV, kilo electron volt
Collapse
Affiliation(s)
- Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Elias G Kikano
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dhiraj Baruah
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Sachin S Saboo
- Department of Radiology, University Of Texas Health Science Center, San Antonio, TX, USA
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Kai R Laukamp
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
26
|
Skornitzke S, Kauczor HU, Stiller W. Virtual monoenergetic reconstructions of dynamic DECT acquisitions for calculation of perfusion maps of blood flow: Quantitative comparison to conventional, dynamic 80 kV p CT perfusion. Eur J Radiol 2020; 131:109262. [PMID: 32942200 DOI: 10.1016/j.ejrad.2020.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Investigation of potential improvements in dynamic CT perfusion measurements by exploitation of improved visualization of contrast agent in virtual monoenergetic reconstructions of images acquired with dual-energy computed tomography (DECT). METHOD For 17 patients with pancreatic carcinoma, dynamic dual-source DECT acquisitions were performed at 80kVp/Sn140kVp every 1.5 s over 51 s. Virtual monoenergetic images (VMI) were reconstructed for photon energies between 40 keV and 150 keV (5 keV steps). Using the maximum-slope model, perfusion maps of blood flow were calculated from VMIs and 80kVp images and compared quantitatively with regard to blood flow measured in regions of interest in healthy tissue and carcinoma, standard deviation (SD), and absolute-difference-to-standard-deviation ratio (ADSDR) of measurements. RESULTS On average, blood flow calculated from VMIs increased with increasing energy levels from 114.3 ± 37.2 mL/100 mL/min (healthy tissue) and 45.6 ± 25.3 mL/100 mL/min (carcinoma) for 40 keV to 128.6 ± 58.9 mL/100 mL/min (healthy tissue) and 75.5 ± 49.8 mL/100 mL/min (carcinoma) for 150 keV, compared to 114.2 ± 37.4 mL/100 mL/min (healthy tissue) and 46.5 ± 26.6 mL/100 mL/min (carcinoma) for polyenergetic 80kVp. Differences in blood flow between tissue types were significant for all energies. Differences between perfusion maps calculated from VMIs and 80kVp images were not significant below 110 keV. SD and ADSDR were significantly better for perfusion maps calculated from VMIs at energies between 40 keV and 55 keV than for those calculated from 80kVp images. Compared to effective dose of dynamic 80kVp acquisitions (4.6 ± 2.2mSv), dose of dynamic DECT/VMI acquisitions (8.0 ± 3.7mSv) was higher. CONCLUSIONS Perfusion maps of blood flow based on low-energy VMIs between 40 keV and 55 keV offer improved robustness and quality of quantitative measurements over those calculated from 80kVp image data (reference standard), albeit at increased patient radiation exposure.
Collapse
Affiliation(s)
- Stephan Skornitzke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Wolfram Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Kay FU. Dual-energy CT and coronary imaging. Cardiovasc Diagn Ther 2020; 10:1090-1107. [PMID: 32968662 PMCID: PMC7487394 DOI: 10.21037/cdt.2020.04.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Dual-energy computed tomography has been proposed for enhancing the evaluation of coronary artery disease in many fronts. However, the clinical translation of such applications has followed a slower pace of clinical translation. This paper will review the evidence supporting the use of dual-energy computed tomography in coronary artery disease (CAD) and provide some practical illustrations, while underscoring the challenges and gaps in knowledge that have contributed to this phenomenon.
Collapse
Affiliation(s)
- Fernando Uliana Kay
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Schwartz FR, Tailor T, Gaca JG, Kiefer T, Harrison K, Hughes GC, Ramirez-Giraldo JC, Marin D, Hurwitz LM. Impact of dual energy cardiac CT for metal artefact reduction post aortic valve replacement. Eur J Radiol 2020; 129:109135. [PMID: 32590257 DOI: 10.1016/j.ejrad.2020.109135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Assess image quality of dual-energy (DE) and single-energy (SE) cardiac multi-detector computed tomographic (MDCT) post aortic valve replacement (AVR) on a dual source MDCT scanner. METHODS Eighty patients with cardiac MDCT acquisitions (ECG gated, dual-source) post-surgical and transcatheter AVR were retrospectively identified. Forty DE (cohort 1) and 40 SE acquisitions (cohort 2; 100 or 120 kVp) were reviewed. Metal artefact at valve coaptation (VC) and valve insertion site (VIS), and contrast enhancement were assessed. Valve leaflet edge definition was graded on a 4-point scale by three radiologists. RESULTS The mean percentage valve area obscured by metal artifact differed between the cohorts; cohort 1 DE blended, high keV and low keV: 14.8 %, 11.1 % and 17.8 % at VC and 16.4 %, 13 %, 20.4 % at VIS respectively. Cohort 2: 25.8 % and 33.6 % (VC and VIS); each DE reconstruction vs SE: P < 0.0001. Average contrast opacification and coefficient of variance for cohort 1: 562.9 ± 144.7, 281.1 ± 60.3 and 1132.7 ± 300.8 Hounsfield Units (HU) and 9.6 %, 10 % and 8.9 %. For cohort 2: 437.2 ± 119.2 HU and 10.8 % (P < 0.01). Average leaflet edge definition cohort 1: 2.3 ± 0.4, 2.7 ± 0.2 and 2.3 ± 0.2, and cohort 2: 2.9 ± 0.2. CONCLUSION DE high keV renderings can result in up to 17.2 % less metal artefact compared to standard SE acquisition for cardiac CT. Contrast opacification and homogeneity is higher for DE blended and low keV renderings compared to SE acquisition with leaflet visibility preferred for low keV and blended DE renderings.
Collapse
Affiliation(s)
- Fides Regina Schwartz
- Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States.
| | - Tina Tailor
- Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States
| | - Jeffrey G Gaca
- Department of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC 27705, United States
| | - Todd Kiefer
- Department of Cardiology, Duke University Medical Center, Durham, NC 27705, United States
| | - Kevin Harrison
- Department of Cardiology, Duke University Medical Center, Durham, NC 27705, United States
| | - G Chad Hughes
- Department of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC 27705, United States
| | | | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States
| | - Lynne M Hurwitz
- Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States
| |
Collapse
|