1
|
Altaf A, Alam MS, Khan S, Azan A, Mubarak F, Knopp E, Siddiqui K, Enam SA. Initial insights into post-contrast enhancement in ultra-low-field MRI: Case Report. FRONTIERS IN NEUROIMAGING 2025; 4:1507522. [PMID: 40070486 PMCID: PMC11893822 DOI: 10.3389/fnimg.2025.1507522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
Brain tumors represent a significant burden, particularly in low- and middle-income countries (LMICs) where access to neuroimaging techniques is often limited. Conventional MRI machines are expensive and bulky, posing a significant challenge in the diagnosis and treatment of brain tumors in LMICs. However, an emerging technology, ultra-low field magnetic resonance imaging (pULF-MRI), has the potential to address this limitation. This study aimed to evaluate the feasibility and effectiveness of post-contrast enhancement in a pULF-MRI scanner for brain tumor imaging in LMICs. A single case study was conducted, and post-contrast enhancement was successfully achieved, revealing the presence of a tumor which was subsequently confirmed on biopsy. To our knowledge, this is the first study to demonstrate the feasibility of post-contrast enhancement in a pULF-MRI scanner for brain tumor imaging. This technology has the potential to significantly improve access to neuroimaging in LMICs, leading to earlier diagnosis and more effective treatment of brain tumors. These promising results suggest that further studies are warranted to explore the potential of pULF-MRI for large-scale screening and diagnosis of brain tumors in LMICs. This can provide a future roadmap for neuroimaging in LMICs, providing a cost-effective and accessible way to diagnose and treat brain tumors, leading to improved healthcare outcomes with a further prospective clinical trial.
Collapse
Affiliation(s)
- Ahmed Altaf
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Sibgha Khan
- Department of Radiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Ali Azan
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University Hospital, Karachi, Pakistan
| | | | | | - Syed Ather Enam
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
2
|
Do TD, Rahn S, Melzig C, Heußel CP, Stiller W, Kauczor HU, Weber TF, Skornitzke S. Quantitative calcium-based assessment of osteoporosis in dual-layer spectral CT. Eur J Radiol 2024; 178:111606. [PMID: 39018645 DOI: 10.1016/j.ejrad.2024.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVES To evaluate a novel calcium-only imaging technique (VCa) with subtracted bone marrow in osteoporosis in dual-layer CT (DLCT) compared to conventional CT images (CI) and dual-energy X-ray absorptiometry (DXA). MATERIAL AND METHODS Images of a multi-energy CT phantom with calcium inserts, quantitative CT calibration phantom, and of 55 patients (mean age: 64.6 ± 11.5 years) were acquired on a DLCT to evaluate bone mineral density (BMD). CI, calcium-suppressed images, and VCa were calculated. For investigating the association of VCa and CI with DXA a subsample of 30 patients (<90 days between DXA and CT) was used. Multiple regression analysis was performed to identify further factors improving the prediction of DXA BMD. RESULTS The calcium concentrations of the CT phantom inserts were significantly associated with CT numbers from VCa (R2 = 0.94) and from CI (R2 = 0.89-0.92). VCa showed significantly higher CT numbers than CI in the phantom (p ≤ 0.001) and clinical setting (p < 0.001). CT numbers from VCa were significantly associated with CI (R2 = 0.95, p < 0.001) and with DXA (R2 = 0.31, p = 0.007), whereas no significant association between DXA and CI was found. Prediction of DXA BMD based on CT numbers derived from VCa yielded R2 = 0.76 in multiple regression analysis. ROC for the differentiation of normal from pathologic BMD in VCa yielded an AUC of 0.7, and a cut-off value of 126HU (sensitivity: 0.90; specificity: 0.47). CONCLUSION VCa images showed better agreement with DXA and known calcium concentrations than CI, and could be used to estimate BMD. A VCa cut-off of 126HU could be used to identify abnormal bone mineral density.
Collapse
Affiliation(s)
- T D Do
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| | - S Rahn
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| | - C Melzig
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| | - C P Heußel
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.
| | - W Stiller
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| | - H U Kauczor
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| | - T F Weber
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| | - S Skornitzke
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Rahn S, Skornitzke S, Melzig C, Reiner T, Stiller W, Heussel CP, Kauczor HU, Weber TF, Do TD. The influence of contrast media on calcium-based imaging of the spine in dual-layer CT. Sci Rep 2024; 14:18898. [PMID: 39143146 PMCID: PMC11324893 DOI: 10.1038/s41598-024-69743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
This study aimed to evaluate the impact of contrast media application on CT attenuation of the bone using a novel calcium-only imaging technique (VCa) from dual-layer spectral detector CT (DLCT), which enables CT-based bone mineral density measurement unimpeded by soft tissue components. For this, true non-contrast (TNC) and venous phase images (VP) of n = 97 patients were acquired. CT attenuation of the first lumbar vertebra (L1) was measured in TNC-VCa, VP-VCa, and in virtual non-contrast images (VNC). CT attenuation was significantly higher in VP-VCa than in TNC-VCa (p < 0.001), although regression analyses revealed a strong linear association between these measures (R2 = 0.84). A statistical model for the prediction of TNC-VCa CT attenuation was established (TNC-VCa[HU] = - 6.81 + 0.87 × VP-VCa[HU]-0.55 × body weight[kg]) and yielded good agreement between observed and predicted values. Furthermore, a L1 CT attenuation threshold of 293 HU in VP-VCa showed a sensitivity of 90% and a specificity of 96% for detecting osteoporosis. The application of contrast media leads to an overestimation of L1 CT attenuation in VCa. However, CT attenuation values from VP-VCa can be used within CT-based opportunistic osteoporosis screening eighter by applying a separate threshold of 293 HU or by converting measured data to TNC-VCa CT attenuation with the given regression equation.
Collapse
Affiliation(s)
- S Rahn
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - S Skornitzke
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - C Melzig
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - T Reiner
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - W Stiller
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - C P Heussel
- Department of Radiology, Thoraxklinik Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - H U Kauczor
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - T F Weber
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - T D Do
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Oh J, Kang JH, Chae HD, Yoo HJ, Hong SH, Lee DY, Choi JY. Diagnosis of osteochondral lesions of the talus on Dual-layer spectral detector CT arthrography: clinical feasibility of virtual noncontrast images. Clin Radiol 2024; 79:e908-e915. [PMID: 38649313 DOI: 10.1016/j.crad.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
AIM To compare the image quality of virtual noncontrast (VNC) and true noncontrast (TNC) CT images and to evaluate the clinical feasibility of VNC CT images for assessing osteochondral lesions of the talus (OLTs). MATERIALS AND METHODS Forty-five OLT patients who underwent ankle CT arthrography (CTA) using dual-layer spectral detector CT were enrolled. Reconstruction of VNC and three-dimensional volume rendering images was performed. Afterward, image noise, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR) were measured. For the subjective evaluation, two board-certified musculoskeletal radiologists [R2-1] assessed spatial resolution, overall image quality, and lesion conspicuity. The accuracy rate for OLT grading was determined in 23 patients who underwent arthroscopic surgery. RESULTS While VNC images showed significantly less noise than TNC images, TNC images showed better SNRs and CNRs (p<.01). In the subjective analysis, TNC images showed better overall image quality (p<.001). For the 3D volume rendering images, VNC images scored significantly higher for lesion conspicuity (p<.001). The accuracy rates of CTA and CTA with VNC images for OLT grading were 79.2% and 83.3%, respectively. Regarding confidence level, when CTA and VNC images were evaluated together, the confidence level was significantly higher than that when only CTA images were evaluated (p<.001). CONCLUSION VNC imaging can provide better confidence level of OLT grading and evaluation of the integrity of the subchondral bone plate when combined with conventional CTA without additional radiation dose to the patient. In addition, VNC images-based 3D volume rendering reconstruction would be helpful for preoperative planning in OLT patients.
Collapse
Affiliation(s)
- J Oh
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - J H Kang
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - H-D Chae
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H J Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S H Hong
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - D Y Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - J-Y Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Chen J, Liu J, Xu D, Liu J, Chen X, Yang S, Yin P, Jiang Z, Mei C, Zhang X, Wang L, Zhang K, Zhou B, Shan H, Li D, Pang P. Lu 3+-based nanoprobe for virtual non-contrast CT imaging of hepatocellular carcinoma. J Control Release 2022; 349:327-337. [PMID: 35787917 DOI: 10.1016/j.jconrel.2022.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Transcatheter arterial chemoembolization (TACE), the mainstream treatment for hepatocellular carcinoma (HCC), is a method of blocking tumor blood vessels with a mixture of lipiodol and chemotherapeutics. And the contrast-enhanced computed tomography (CT) is the commonly used way for follow-up of HCC after TACE. However, it is noteworthy that when lipiodol deposition plays an embolic effect, it also produces high-density artifacts in CT images. These artifacts usually conceal the enhancement effect of iodine contrast agents. As a result, the residual region is difficult to be visualized. To overcome this obstacle, we developed one kind of Lu3+/Gd3+ doped fluoride nanoprobe modified with Dp-PEG2000 to realize CT/MRI dual-modality imaging of HCC. Compared with lipiodol or ioversol, the obtained PEGylated product LG-PEG demonstrated a greater density value in high keV CT images. In vitro experiments showed the lipiodol artifacts can be removed in virtual non-contrast (VNC) imaging, but the density of ioversol was also removed at the same time. However, the LG-PEG synthesized in this work can still maintain a high density in VNC imaging, which indicates that LG-PEG can exploit its advantages to the full in VNC imaging. Furthermore, LG-PEG successfully exerted tumor enhancement effects in the in vivo VNC images of HCC with lipiodol deposition. In addition, LG-PEG exhibited a strong T2 enhancement effect with low biological toxicity and less side-effect on the main organ and blood. Thus, the LG-PEG reported in this research can serve as an effective and safe VNC contrast agent for HCC imaging after TACE.
Collapse
Affiliation(s)
- Jiayao Chen
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiani Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Duo Xu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Junfeng Liu
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaojun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Shuai Yang
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Pan Yin
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaoting Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lizhu Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ke Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Hong Shan
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Pengfei Pang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
6
|
Zhou J, Zhou Y, Hu H, Shen MP, Ge YQ, Tao XW, Xu XQ, Su GY, Wu FY. Feasibility study of using virtual non-contrast images derived from dual-energy CT to replace true non-contrast images in patients diagnosed with papillary thyroid carcinoma. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:711-720. [PMID: 34092693 DOI: 10.3233/xst-210884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To assess the feasibility of using virtual non-contrast (VNC) images derived from dual-energy computed tomography (DECT) to replace true non-contrast (TNC) images of papillary thyroid carcinoma (PTC) patients. METHODS Images of 96 PTC patients were retrospectively analyzed. TNC images were acquired under the single-energy mode of DECT after the plain scanning. The arterial and venous phase VNC (VNC-a and VNC-v) images were generated by the post-processing algorithm from the arterial phase and venous phase of contrast-enhanced CT images, respectively. Mean attenuation values, image noise, number and length of calcification were measured. Radiation dose was also calculated. Last, subjective score of image quality was evaluated by a 5-point scale. RESULTS Signal-to-noise ratio (SNR) of each tissue in TNC images is significantly higher than that of VNC images (p<0.050). Contrast-to-noise ratio (CNR) of fat, muscle, thyroid nodules and internal carotid artery in TNC images is significantly higher than that of VNC images, while CNR in TNC images is lower for cervical vertebra (p<0.001). Calcification is detected on TNC images of 44 patients, while it is omitted on VNC images of 14 patients (31.8%). The subjective score of TNC images is higher than VNC images (p<0.001). The effective dose reduction is 47.6% by avoiding plain scanning. CONCLUSIONS Considering the different attenuation value, SNR, CNR and especially reduced detection rate of calcification, we deem that VNC images cannot be directly used to replace TNC images in PTC patients, despite the reduced radiation dose.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei-Ping Shen
- Department of Thyroid Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Yi Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Evaluating anemia using contrast-enhanced spectral detector CT of the chest in a large cohort of 522 patients. Eur Radiol 2020; 31:4350-4357. [PMID: 33241515 PMCID: PMC8128794 DOI: 10.1007/s00330-020-07497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Objectives The blood of patients with anemia demonstrates distinctly lower attenuation in unenhanced CT images. However, the frequent usage of intravenous contrast hampers evaluation of anemia. Spectral detector computed tomography (SDCT) allows for reconstruction of virtual non-contrast images (VNC) from contrast-enhanced data (CE). The purpose of this study was to evaluate whether VNC allow for prediction of anemia. Methods Five hundred twenty-two patients with CE-SDCT of the chest and accessible serum hemoglobin (HbS) were retrospectively included. Patients were assigned to three groups (severe anemia, moderate/mild anemia, and healthy) based on recent lab tests (≤ 7 days) for HbS following gender and the WHO definition of anemia. CT attenuation was determined using two ROI in the left ventricular lumen and one ROI in the descending thoracic aorta. ROI were placed on CE and copied to VNC. ANOVA, linear regression, and receiver operating characteristics were used for statistic evaluation. Results Average HbS was 11.6 ± 2.4 g/dl. Attenuation on VNC showed significant differences between healthy patients, patients with mild/moderate anemia, and severely anemic patients (all p ≤ 0.05). Applying cutoffs of 39.2/37.6 HU and 33.6/32.7 HU allowed to differentiate between healthy, mild/moderately, and severely anemic men/women (AUC 0.857/0.833 and 0.879/0.932). A linear relationship between HbS and attenuation on VNC was established (r2 = 0.54, HbS = − 0.875 + 0.329 × HU). Conclusions An approximation of HbS and presence of anemia can be conducted based on simple attenuation measurements in contrast-enhanced SDCT examinations enabled by VNC imaging. Key Points • While the attenuation of blood is a previously described biomarker for anemia in non-contrast images, virtual non-contrast images from spectral detector CT circumvent this limitation and allow for diagnosis of anemia in contrast-enhanced scans. • Attenuation of blood in virtual non-contrast images derived from spectral detector CT shows a moderate correlation to serum hemoglobin levels. • Presence of anemia be estimated in virtual non-contrast images using proposed cutoffs of 39.2 HU and 37.6 HU for men and women, respectively, to differentiate between healthy and anemic patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07497-y.
Collapse
|