1
|
Elkilany A, Fehrenbach U, Auer TA, Müller T, Schöning W, Hamm B, Geisel D. A radiomics-based model to classify the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI. Sci Rep 2021; 11:10778. [PMID: 34031487 PMCID: PMC8144372 DOI: 10.1038/s41598-021-90257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The implementation of radiomics in radiology is gaining interest due to its wide range of applications. To develop a radiomics-based model for classifying the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI, 248 patients with a known etiology of liver cirrhosis who underwent 306 gadoxetic acid-enhanced MRI examinations were included in the analysis. MRI examinations were classified into 6 groups according to the etiology of liver cirrhosis: alcoholic cirrhosis, viral hepatitis, cholestatic liver disease, nonalcoholic steatohepatitis (NASH), autoimmune hepatitis, and other. MRI examinations were randomized into training and testing subsets. Radiomics features were extracted from regions of interest segmented in the hepatobiliary phase images. The fivefold cross-validated models (2-dimensional-(2D) and 3-dimensional-(3D) based) differentiating cholestatic cirrhosis from noncholestatic etiologies had the best accuracy (87.5%, 85.6%), sensitivity (97.6%, 95.6%), predictive value (0.883, 0.877), and area under curve (AUC) (0.960, 0.910). The AUC was larger in the 2D-model for viral hepatitis, cholestatic cirrhosis, and NASH-associated cirrhosis (P-value of 0.05, 0.05, 0.87, respectively). In alcoholic cirrhosis, the AUC for the 3D model was larger (P = 0.01). The overall intra-class correlation coefficient (ICC) estimates and their 95% confident intervals (CI) for all features combined was 0.68 (CI 0.56-0.87) for 2D and 0.71 (CI 0.61-0.93) for 3D measurements suggesting moderate reliability. Radiomics-based analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI may be a promising noninvasive method for identifying the etiology of liver cirrhosis with better performance of the 2D- compared with the 3D-generated models.
Collapse
Affiliation(s)
- Aboelyazid Elkilany
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Uli Fehrenbach
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Timo Alexander Auer
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Tobias Müller
- Division of Gastroenterology and Hepatology, Department of Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wenzel Schöning
- Department of General, Visceral and Transplantation Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd Hamm
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik Geisel
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
2
|
Intracellular accumulation capacity of gadoxetate: initial results for a novel biomarker of liver function. Sci Rep 2020; 10:18104. [PMID: 33093649 PMCID: PMC7582909 DOI: 10.1038/s41598-020-75145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown gadoxetate disodium’s potential to represent liver function by its retention in the hepatobiliary phase. Additionally, in cardiac imaging, quantitative characterization of altered parenchyma is established by extracellular volume (ECV) calculation with extracellular contrast agents. Therefore, the purpose of our study was to evaluate whether intracellular accumulation capacity (IAC) of gadoxetate disodium derived from ECV calculation provides added scientific value in terms of liver function compared to the established parameter reduction rate (RR). After local review board approval, 105 patients undergoing standard MR examination with gadoxetate disodium were included. Modified Look-Locker sequences were obtained before and 20 min after contrast agent administration. RR and IAC were calculated and correlated with serum albumin, as a marker of synthetic liver function. Correlation was higher between IAC and albumin, than between RR and albumin. Additionally, capacity of both RR and IAC to distinguish between patients with or without liver cirrhosis was investigated, and differed significantly in their respective means between patients with cirrhosis and those without. We concluded, that the formula to calculate ECV can be transferred to calculate IAC of gadoxetate disodium in hepatocytes, and, thereby, IAC may possibly qualify as an imaging-based parameter to estimate synthetic liver function.
Collapse
|