1
|
Chen H, Huang X, Bao Y, Zhao C, Lin J. The diagnostic value of quantitative assessment of MR neurography in chronic inflammatory demyelinating polyradiculoneuropathy: a systematic review and meta-analysis. Br J Radiol 2023; 96:20221037. [PMID: 37393524 PMCID: PMC10607413 DOI: 10.1259/bjr.20221037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the diagnostic value of quantitative magnetic resonance neurography (MRN) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). We also compared various MRN parameters and determined the best performing one. METHODS Through literature searches in PubMed, Embase, Cochrane, Ovid MEDLINE and ClinicalTtrials.gov until March 1, 2023, we selected studies with the diagnostic performance of MRN in CIDP patients. The pooled estimated sensitivity and specificity of quantitative MRN parameters were determined by a bivariate random-effects model. Subgroup analysis was performed to evaluate the proper quantitative parameters and nerve sites. RESULTS A total of 14 quantitative MRN studies with 23 results gave a pooled sensitivity of 0.73 (95% CI 0.66-0.79) and a pooled specificity of 0.89 (95% CI 0.84-0.92). The area under the curve (AUC) was 0.89 (95%CI 0.86-0.92). Subgroup analysis of quantitative parameters showed the fractional anisotropy (FA) with the highest sensitivity of 0.85 (95% CI 0.77-0.90) and cross-sectional area (CSA) with the highest specificity of 0.95 (95% CI 0.85-0.99). The pooled correlation coefficient for interobserver agreements was 0.90 (95%CI 0.82-0.95). CONCLUSION Quantitative MRN has considerable diagnostic value in CIDP patients with accuracy and reliability. FA and CSA can be promising parameters in the future diagnosis of CIDP patients. ADVANCES IN KNOWLEDGE This is the first meta-analysis of quantitative MRN in the diagnosis of CIDP.We have selected reliable parameters with cut-off value and provided new insights for subsequent diagnosis of CIDP.
Collapse
Affiliation(s)
| | | | - Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
2
|
Ma Z, Lv H, Zhang H, Wang H, Li J, Yu M, Zhu Y, Huang D, Meng L, Yuan Y. Clinicopathological features in two families with MARS-related Charcot-Marie-Tooth disease. Neuropathology 2022; 42:505-511. [PMID: 35723632 DOI: 10.1111/neup.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Mutations in MARS gene cause dominant Charcot-Marie-Tooth disease (CMT) 2U. The aim of this study is to investigate phenotypic heterogeneities and peripheral neuropathology of MARS-related CMT patients. We identified a heterozygous p. R199Q mutation and an already reported heterozygous p. P800T mutation of MARS gene in two unrelated families using targeted next-generation sequencing. The first pedigree comprised three patients over three generations and the second pedigree comprised two patients over two generations. In addition of an asymptomatic carrier in the second pedigree, all patients presented with childhood-onset length dependent sensorimotor neuropathy with pes cavus. Nerve conduction studies revealed slowing of motor nerve conduction velocities (MNCV) of the median nerve indicating intermediate neuropathy in the patient with the p. R199Q mutation, and normal MNCV with reduced compound muscle action potential indicating axonal neuropathy in the patient with the p. P800T mutation. Magnetic resonance imaging detected a pattern of nerve changes similar to those in demyelinating polyneuropathies in intermediate type (p. R199Q mutation) patients compared with normal in the axonal type (p. P800T mutation) patients. Additionally, sural nerve biopsy revealed loss of myelinated axons with onion bulb formation in both mutations. By electron microscopy, a marked decrease of myelinated and unmyelinated fiber, neurofilaments aggregate with degenerating mitochondria and microtubule loss in axons were frequently found. Denervated Schwann cell complexes and few collagen pockets indicated involvement of unmyelinated Schwann cells. Therefore, the investigated MARS mutations cause not only the known axonal type but also intermediate type neuropathy with involvement of both axons and Schwann cells. Those findings are useful for the differential diagnosis of CMT patients with unknown MARS variants.
Collapse
Affiliation(s)
- Zhixing Ma
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hongwei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jingcheng Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Diandian Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Chhabra A, Deshmukh SD, Lutz AM, Fritz J, Andreisek G, Sneag DB, Subhawong T, Singer AD, Wong PK, Thakur U, Pandey T, Chalian M, Mogharrabi BN, Guirguis M, Xi Y, Ahlawat S. Neuropathy Score Reporting and Data System: A Reporting Guideline for MRI of Peripheral Neuropathy With a Multicenter Validation Study. AJR Am J Roentgenol 2022; 219:279-291. [PMID: 35234483 DOI: 10.2214/ajr.22.27422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND. A standardized guideline and scoring system would improve evaluation and reporting of peripheral neuropathy (PN) on MRI. OBJECTIVE. The objective of this study was to create and validate a neuropathy classification and grading system, which we named the Neuropathy Score Reporting and Data System (NS-RADS). METHODS. This retrospective study included 100 patients with nerve imaging studies and known clinical diagnoses. Experts crafted NS-RADS using mutually agreed-on qualitative criteria for the classification and grading of PN. Different classes were created to account for the spectrum of underlying pathologies: unremarkable (U), injury (I), neoplasia (N), entrapment (E), diffuse neuropathy (D), not otherwise specified (NOS), and postintervention state (PI). Subclasses were established to describe the severity or extent of the lesions. Validation testing was performed by 11 readers from 10 institutions with experience levels ranging from 3 to 18 years after residency. After initial reader training, cases were presented to readers who were blinded to the final clinical diagnoses. Interobserver agreement was assessed using correlation coefficients and the Conger kappa, and accuracy testing was performed. RESULTS. Final clinical diagnoses included normal (n = 5), nerve injury (n = 25), entrapment (n = 15), neoplasia (n = 33), diffuse neuropathy (n = 18), and persistent neuropathy after intervention (n = 4). The miscategorization rate for NS-RADS classes was 1.8%. Final diagnoses were correctly identified by readers in 71-88% of cases. Excellent inter-reader agreement was found on the NS-RADS pathology categorization (κ = 0.96; 95% CI, 0.93-0.98) as well as muscle pathology categorization (κ = 0.76; 95% CI, 0.68-0.82). The accuracy for determining milder versus more severe categories per radiologist ranged from 88% to 97% for nerve lesions and from 86% to 94% for muscle abnormalities. CONCLUSION. The proposed NS-RADS classification is accurate and reliable across different reader experience levels and a spectrum of PN conditions. CLINICAL IMPACT. NS-RADS can be used as a standardized guideline for reporting PN and improved multidisciplinary communications.
Collapse
Affiliation(s)
- Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9178
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX
| | - Swati D Deshmukh
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Amelie M Lutz
- Department of Radiology, Stanford School of Medicine, Stanford, CA
| | - Jan Fritz
- Department of Radiology, NYU Grossman School of Medicine, New York, NY
| | - Gustav Andreisek
- Institute of Radiology, Cantonal Hospital Munsterlingen, Munsterlingen, Switzerland
- Department of Radiology, University of Zurich, Zurich, Switzerland
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
| | - Ty Subhawong
- Department of Radiology, University of Miami Health System, Miami, FL
| | | | - Philip K Wong
- Department of Radiology, Grady Memorial Hospital, Atlanta, GA
| | - Uma Thakur
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9178
| | - Tarun Pandey
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Majid Chalian
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA
| | - Bayan N Mogharrabi
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9178
| | - Mina Guirguis
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9178
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9178
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
4
|
Keh RYS, Shah S, Lilleker JB, Lavin T, Morrow J, Carr AS, Lunn MP. Pragmatic guide to peripheral nerve disease and the role of clinical biomarkers. Pract Neurol 2022; 22:pn-2022-003438. [PMID: 35850979 DOI: 10.1136/pn-2022-003438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
In clinical neurology practice, there are few sensitive, specific and responsive serological biomarkers reflecting pathological processes affecting the peripheral nervous system. Instead, we rely on surrogate multimodality biomarkers for diagnosis and management. Correct use and interpretation of the available tests is essential to ensure that appropriate treatments are used and adjusted in a timely fashion. The incorrect application or interpretation of biomarkers can result in misdiagnosis and delays in appropriate treatment. Here, we discuss the uses and limitations of such biomarkers and discuss possible future developments.
Collapse
Affiliation(s)
- Ryan Yann Shern Keh
- Centre for Neuromuscular Diseases, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - James B Lilleker
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Division of Musculoskeletal and Dermatological, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Tim Lavin
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Jasper Morrow
- Centre for Neuromuscular Diseases, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Lysholm Department of Neuroradiology, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling S Carr
- Centre for Neuromuscular Diseases, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Institute of Neurology, University College London, London, UK
| | - Michael P Lunn
- Centre for Neuromuscular Diseases, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Chen Y, Tang X. Chronic Inflammatory Demyelinating Polyradiculoneuropathy in Association With Concomitant Diseases: Identification and Management. Front Immunol 2022; 13:890142. [PMID: 35860284 PMCID: PMC9289227 DOI: 10.3389/fimmu.2022.890142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare, heterogeneous, but treatable autoimmune-mediated peripheral neuropathy characterized by demyelination. CIDP can occur independently or simultaneously with a variety of diseases such as diabetes, monoclonal gammopathy of undetermined significance (MGUS), connective tissue disease, and HIV. It is important to identify CIDP and specific peripheral neuropathies caused by these diseases; this review aims to summarize the CIDP literatures related to diabetes, MGUS, SLE, and HIV, and to be helpful for the management of such patients.
Collapse
|
6
|
Fanous J, Zero AM, Gilmore KJ, Doherty TJ, Rice CL. Length-dependent changes of lower limb muscle morphology in Chronic Inflammatory Demyelinating Polyneuropathy assessed with magnetic resonance imaging. Eur J Transl Myol 2021; 31. [PMID: 34802220 PMCID: PMC8758964 DOI: 10.4081/ejtm.2021.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to assess muscle quantity of the thigh and leg in patients with chronic inflammatory demyelinating polyneuropathy (CIDP) compared to age and sex matched controls in exploring length-dependent changes of innervated muscles. In five people with CIDP and seven controls, magnetic resonance imaging was used to assess muscle morphology of the four parts of the quadriceps and medial hamstring muscles. Findings were compared to the triceps surae from a subset of participants. The CIDP group had less contractile tissue in the quadriceps (11.5%, P<0.05), hamstrings (15.6%, P<0.05) and triceps surae (35.9%, P<0.05) compared to controls. Additionally, CIDP had less contractile tissue (18.7%) in the triceps surae compared to the hamstrings (P<0.05). Muscle quantity in the quadriceps and hamstrings in CIDP was less than controls, but differences were greater for the distal triceps surae. These findings support a length-dependent affect of CIDP on limb musculature composition.
Collapse
Affiliation(s)
- Jacob Fanous
- School of Kinesiology, The University of Western Ontario, London, ON.
| | - Alexander M Zero
- School of Kinesiology, The University of Western Ontario, London, ON.
| | | | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada ; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON.
| | - Charles L Rice
- School of Kinesiology, The University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON.
| |
Collapse
|