1
|
Parillo M, Mallio CA. The Whole-Body MRI Reporting and Data System Guidelines for Prostate Cancer (MET-RADS-P), Multiple Myeloma (MY-RADS), and Cancer Screening (ONCO-RADS). Cancers (Basel) 2025; 17:275. [PMID: 39858056 PMCID: PMC11763526 DOI: 10.3390/cancers17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is being employed with increasing frequency to evaluate a broader spectrum of patients with diverse types of cancer and for cancer screening purposes. While clinical guidelines support its use, a standardized radiological approach is still lacking. To improve consistency in the acquisition, interpretation, and reporting of WB-MRI examinations, three reporting and data systems (RADSs) have been recently suggested: METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P), Myeloma Response Assessment and Diagnosis System (MY-RADS), and Oncologically Relevant Findings Reporting and Data System (ONCO-RADS). MET-RADS-P was developed to stage and monitor men with advanced prostate cancer using WB-MRI. It has emerged as a reliable imaging biomarker for predicting metastatic disease progression and assessing treatment response. MY-RADS was developed to stage and monitor patients with multiple myeloma using WB-MRI, emerging as a prognostic imaging biomarker. However, the evidence regarding inter-reader agreement for MY-RADS is currently limited. ONCO-RADS was developed to standardize the use of WB-MRI for cancer screening in individuals with cancer predisposition syndromes and in the general population. While initial findings are promising, the evidence supporting its use remains limited. To further validate and expand upon these promising preliminary findings, additional large-scale, prospective, multicenter studies are necessary.
Collapse
Affiliation(s)
- Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
2
|
Ponsiglione A, McGuire W, Petralia G, Fennessy M, Benkert T, Ponsiglione AM, Padhani AR. Image quality of whole-body diffusion MR images comparing deep-learning accelerated and conventional sequences. Eur Radiol 2024; 34:7985-7993. [PMID: 38960946 DOI: 10.1007/s00330-024-10883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES To compare the image quality of deep learning accelerated whole-body (WB) with conventional diffusion sequences. METHODS Fifty consecutive patients with bone marrow cancer underwent WB-MRI. Two experts compared axial b900 s/mm2 and the corresponding maximum intensity projections (MIP) of deep resolve boost (DRB) accelerated diffusion-weighted imaging (DWI) sequences (time of acquisition: 6:42 min) against conventional sequences (time of acquisition: 14 min). Readers assessed paired images for noise, artefacts, signal fat suppression, and lesion conspicuity using Likert scales, also expressing their overall subjective preference. Signal-to-noise and contrast-to-noise ratios (SNR and CNR) and the apparent diffusion coefficient (ADC) values of normal tissues and cancer lesions were statistically compared. RESULTS Overall, radiologists preferred either axial DRB b900 and/or corresponding MIP images in almost 80% of the patients, particularly in patients with a high body-mass index (BMI > 25 kg/m2). In qualitative assessments, axial DRB images were preferred (preferred/strongly preferred) in 56-100% of cases, whereas DRB MIP images were favoured in 52-96% of cases. DRB-SNR/CNR was higher in all normal tissues (p < 0.05). For cancer lesions, the DRB-SNR was higher (p < 0.001), but the CNR was not different. DRB-ADC values were significantly higher for the brain and psoas muscles, but not for cancer lesions (mean difference: + 53 µm2/s). Inter-class correlation coefficient analysis showed good to excellent agreement (95% CI 0.75-0.93). CONCLUSION DRB sequences produce higher-quality axial DWI, resulting in improved MIPs and significantly reduced acquisition times. However, differences in the ADC values of normal tissues need to be considered. CLINICAL RELEVANCE STATEMENT Deep learning accelerated diffusion sequences produce high-quality axial images and MIP at reduced acquisition times. This advancement could enable the increased adoption of Whole Body-MRI for the evaluation of patients with bone marrow cancer. KEY POINTS Deep learning reconstruction enables a more than 50% reduction in acquisition time for WB diffusion sequences. DRB images were preferred by radiologists in almost 80% of cases due to fewer artefacts, improved background signal suppression, higher signal-to-noise ratio, and increased lesion conspicuity in patients with higher body mass index. Cancer lesion diffusivity from DRB images was not different from conventional sequences.
Collapse
Affiliation(s)
- Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Will McGuire
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Marie Fennessy
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - Alfonso Maria Ponsiglione
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, United Kingdom.
| |
Collapse
|
3
|
Perillo T, Giorgio C, Fico A, Perrotta M, Serino A, Cuocolo R, Manto A. Review of whole-body magnetic resonance imaging in multiple myeloma. Jpn J Radiol 2024; 42:1381-1391. [PMID: 39088009 DOI: 10.1007/s11604-024-01635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Multiple Myeloma (MM) is a hematological malignancy affecting bone marrow, most frequently in elderly men. Imaging has a crucial role in this disease. Recently, whole-body MRI has been introduced and it has gained growing interest due to is high sensitivity and specificity in evaluating bone marrow involvement in MM. Diffusion-weighted sequences (DWI) with apparent diffusion coefficient (ADC) maps have emerged as the most sensitive technique to evaluate patients with MM, both in the pre- and post-treatment setting. Aim of this review is to provide an overview of the role and main imaging findings of whole-body MRI in MM.
Collapse
Affiliation(s)
- Teresa Perillo
- Neuroradiology Unit, Umberto I" Hospital, Nocera Inferiore, Italy.
| | - Claudia Giorgio
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Fisciano, Italy
| | - Arianna Fico
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Fisciano, Italy
| | | | | | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Fisciano, Italy
| | - Andrea Manto
- Neuroradiology Unit, Umberto I" Hospital, Nocera Inferiore, Italy
| |
Collapse
|
4
|
Rodríguez-Laval V, Lumbreras-Fernández B, Aguado-Bueno B, Gómez-León N. Imaging of Multiple Myeloma: Present and Future. J Clin Med 2024; 13:264. [PMID: 38202271 PMCID: PMC10780302 DOI: 10.3390/jcm13010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Multiple myeloma (MM) is the second most common adult hematologic malignancy, and early intervention increases survival in asymptomatic high-risk patients. Imaging is crucial for the diagnosis and follow-up of MM, as the detection of bone and bone marrow lesions often dictates the decision to start treatment. Low-dose whole-body computed tomography (CT) is the modality of choice for the initial assessment, and dual-energy CT is a developing technique with the potential for detecting non-lytic marrow infiltration and evaluating the response to treatment. Magnetic resonance imaging (MRI) is more sensitive and specific than 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for the detection of small focal lesions and diffuse marrow infiltration. However, FDG-PET/CT is recommended as the modality of choice for follow-up. Recently, diffusion-weighted MRI has become a new technique for the quantitative assessment of disease burden and therapy response. Although not widespread, we address current proposals for structured reporting to promote standardization and diminish variations. This review provides an up-to-date overview of MM imaging, indications, advantages, limitations, and recommended reporting of each technique. We also cover the main differential diagnosis and pitfalls and discuss the ongoing controversies and future directions, such as PET-MRI and artificial intelligence.
Collapse
Affiliation(s)
- Víctor Rodríguez-Laval
- Department of Radiology, University Hospital La Princesa, IIS-Princesa, Calle Diego de León 62, 28005 Madrid, Spain; (B.L.-F.); (N.G.-L.)
- Department of Medicine, Autonomous University of Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Blanca Lumbreras-Fernández
- Department of Radiology, University Hospital La Princesa, IIS-Princesa, Calle Diego de León 62, 28005 Madrid, Spain; (B.L.-F.); (N.G.-L.)
| | - Beatriz Aguado-Bueno
- Department of Hematology, University Hospital La Princesa, IIS-Princesa, Calle Diego de León 62, 28005 Madrid, Spain;
| | - Nieves Gómez-León
- Department of Radiology, University Hospital La Princesa, IIS-Princesa, Calle Diego de León 62, 28005 Madrid, Spain; (B.L.-F.); (N.G.-L.)
- Department of Medicine, Autonomous University of Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
5
|
Chakraborty R, Hillengass J, Lentzsch S. How do we image patients with multiple myeloma and precursor states? Br J Haematol 2023; 203:536-545. [PMID: 37217164 DOI: 10.1111/bjh.18880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Advances in morphological and functional imaging have led to superior detection of early bone disease, bone marrow infiltration, paramedullary and extramedullary involvement in multiple myeloma. The two functional imaging modalities that are most widely used and standardized are 18F-fluorodeoxyglucose-Positron emission tomography/computed tomography (FDG PET/CT) and whole-body magnetic resonance imaging with diffusion-weighted imaging (WB DW-MRI). Both prospective and retrospective studies have demonstrated that WB DW-MRI is more sensitive than PET/CT in the detection of baseline tumour burden and to assess response after therapy. In patients with smouldering multiple myeloma, WB DW-MRI is now the preferred imaging modality to rule out two or more unequivocal lesions which would be considered a myeloma-defining event by the updated international myeloma working group (IMWG) criteria. In addition to sensitive detection of baseline tumour burden, both PET/CT and WB DW-MRI have been successfully used for monitoring response to therapy and provide information that is complementary to IMWG response assessment and bone marrow minimal residual disease. In this article, we present 3 vignettes illustrating how we approach the use of modern imaging in the management of patients with multiple myeloma and precursor states, with a specific focus on recent data that have emerged since the publication of the IMWG consensus guideline on imaging. We have utilized data from prospective and retrospective studies to provide a rationale for our approach to imaging in these clinical scenarios and highlighted knowledge gaps requiring future investigation.
Collapse
Affiliation(s)
| | - Jens Hillengass
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Suzanne Lentzsch
- Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
6
|
Agarwal G, Nador G, Varghese S, Getu H, Palmer C, Watson E, Pereira C, Sallemi G, Partington K, Patel N, Soundarajan R, Mills R, Brouwer R, Maritati M, Shah A, Peppercorn D, Oppermann U, Edwards CM, Rodgers CT, Javaid MK, Gooding S, Ramasamy K. Prospective Assessment of Tumour Burden and Bone Disease in Plasma Cell Dyscrasias Using DW-MRI and Exploratory Bone Biomarkers. Cancers (Basel) 2022; 15:cancers15010095. [PMID: 36612090 PMCID: PMC9817825 DOI: 10.3390/cancers15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Novel biomarkers for tumour burden and bone disease are required to guide clinical management of plasma cell dyscrasias. Recently, bone turnover markers (BTMs) and Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) have been explored, although their role in the prospective assessment of multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) is unclear. Here, we conducted a pilot observational cohort feasibility study combining serum BTMs and DW-MRI in addition to standard clinical assessment. Fifty-five patients were recruited (14 MGUS, 15 smouldering MM, 14 new MM and 12 relapsed MM) and had DW-MRI and serum biomarkers (P1NP, CTX-1, ALP, DKK1, sclerostin, RANKL:OPG and BCMA) measured at baseline and 6-month follow-up. Serum sclerostin positively correlated with bone mineral density (r = 0.40-0.54). At baseline, serum BCMA correlated with serum paraprotein (r = 0.42) and serum DKK1 correlated with serum free light chains (r = 0.67); the longitudinal change in both biomarkers differed between International Myeloma Working Group (IMWG)-defined responders and non-responders. Myeloma Response Assessment and Diagnosis System (MY-RADS) scoring of serial DW-MRI correlated with conventional IMWG response criteria for measuring longitudinal changes in tumour burden. Overall, our pilot study suggests candidate radiological and serum biomarkers of tumour burden and bone loss in MM/MGUS, which warrant further exploration in larger cohorts to validate the findings and to better understand their clinical utility.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
- Correspondence: (G.A.); (K.R.)
| | - Guido Nador
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Sherin Varghese
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
- Oxford Translational Myeloma Centre, Oxford OX3 7LD, UK
| | - Hiwot Getu
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Charlotte Palmer
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Edmund Watson
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Claudio Pereira
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Germana Sallemi
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Karen Partington
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Neel Patel
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Rajkumar Soundarajan
- Oxford Centre for Magnetic Resonance, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Rebecca Mills
- Oxford Centre for Magnetic Resonance, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Richard Brouwer
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
- Oxford Translational Myeloma Centre, Oxford OX3 7LD, UK
| | - Marina Maritati
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Aarti Shah
- Department of Radiology, Hampshire Hospitals NHS Foundation Trust, Hampshire SO22 5DG, UK
| | - Delia Peppercorn
- Department of Radiology, Hampshire Hospitals NHS Foundation Trust, Hampshire SO22 5DG, UK
| | - Udo Oppermann
- Oxford Translational Myeloma Centre, Oxford OX3 7LD, UK
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Claire M. Edwards
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- Nuffield Department of Surgical Sciences (NDS), Oxford OX3 9DU, UK
| | | | - Muhammad Kassim Javaid
- Botnar Research Centre, The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Sarah Gooding
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
- Oxford Translational Myeloma Centre, Oxford OX3 7LD, UK
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Karthik Ramasamy
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
- Oxford Translational Myeloma Centre, Oxford OX3 7LD, UK
- Correspondence: (G.A.); (K.R.)
| |
Collapse
|
7
|
ElGendy K, Barwick TD, Auner HW, Chaidos A, Wallitt K, Sergot A, Rockall A. Repeatability and test-retest reproducibility of mean apparent diffusion coefficient measurements of focal and diffuse disease in relapsed multiple myeloma at 3T whole body diffusion-weighted MRI (WB-DW-MRI). Br J Radiol 2022; 95:20220418. [PMID: 35867890 PMCID: PMC9815750 DOI: 10.1259/bjr.20220418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To assess the test-retest reproducibility and intra/interobserver agreement of apparent diffusion coefficient (ADC) measurements of myeloma lesions using whole body diffusion-weighted MRI (WB-DW-MRI) at 3T MRI. METHODS Following ethical approval, 11 consenting patients with relapsed multiple myeloma were prospectively recruited and underwent baseline WB-DW-MRI. For a single bed position, axial DWI was repeated after a short interval to permit test-retest measurements.Mean ADC measurement was performed by two experienced observers. Intra- and interobserver agreement and test-retest reproducibility were assessed, using coefficient of variation (CV) and interclass correlation coefficient (ICC) measures, for diffuse and focal lesions (small ≤10 mm and large >10 mm). RESULTS 47 sites of disease were outlined (23 focal, 24 diffuse) in different bed positions (pelvis = 22, thorax = 20, head and neck = 5). For all lesions, there was excellent intraobserver agreement with ICC of 0.99 (0.98-0.99) and COV of 5%. For interobserver agreement, ICC was 0.89 (0.8-0.934) and COV was 17%. There was poor interobserver agreement for diffuse disease (ICC = 0.46) and small lesions (ICC = 0.54).For test-retest reproducibility, excellent ICC (0.916) and COV (14.5%) values for mean ADC measurements were observed. ICCs of test-retest were similar between focal lesions (0.83) and diffuse infiltration (0.80), while ICCs were higher in pelvic (0.95) compared to thoracic (0.81) region and in small (0.96) compared to large (0.8) lesions. CONCLUSION ADC measurements of focal lesions in multiple myeloma are repeatable and reproducible, while there is more variation in ADC measurements of diffuse disease in patients with multiple myeloma. ADVANCES IN KNOWLEDGE Mean ADC measurements are repeatable and reproducible in focal lesions in multiple myeloma, while the ADC measurements of diffuse disease in multiple myeloma are more subject to variation. The evidence supports the future potential role of ADC measurements as predictive quantitative biomarker in multiple myeloma.
Collapse
Affiliation(s)
| | | | | | | | - Kathryn Wallitt
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Antoni Sergot
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | | |
Collapse
|
8
|
Mena E, Turkbey EB, Lindenberg L. Modern radiographic imaging in multiple myeloma, what is the minimum requirement? Semin Oncol 2022; 49:86-93. [PMID: 35190200 PMCID: PMC9149049 DOI: 10.1053/j.seminoncol.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/09/2022] [Indexed: 02/03/2023]
Abstract
Imaging innovations offer useful techniques applicable to many oncology specialties. Treatment advances in the field of multiple myeloma (MM) have increased the need for accurate diagnosis, particularly in the bone marrow, which is an essential component in myeloma-defining criteria. Modern imaging identifies osteolytic lesions, distinguishes solitary plasmacytoma from MM, and evaluates the presence of extramedullary disease. Furthermore, imaging is increasingly valuable in post-treatment response assessment. Detection of minimal residual disease after therapy carries prognostic implications and influences subsequent treatment planning. Whole-body low-dose Computed Tomography is now recommended over the conventional skeletal survey, and more sophisticated functional imaging methods, such as 18F-Fluorodeoxyglucose Positron Emission Tomography , and diffusion-weighted Magnetic Resonance Imaging are proving effective in the assessment and monitoring of MM disease. This review focuses on understanding indications and advantages of these imaging modalities for diagnosing and managing myeloma.
Collapse
Affiliation(s)
- Esther Mena
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| | - Evrim B. Turkbey
- Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skeletal Radiol 2022; 51:101-122. [PMID: 34523007 DOI: 10.1007/s00256-021-03903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 02/02/2023]
Abstract
The last decades, increasing research has been conducted on dynamic contrast-enhanced and diffusion-weighted MRI techniques in multiple myeloma and its precursors. Apart from anatomical sequences which are prone to interpretation errors due to anatomical variants, other pathologies and subjective evaluation of signal intensities, dynamic contrast-enhanced and diffusion-weighted MRI provide additional information on microenvironmental changes in bone marrow and are helpful in the diagnosis, staging and follow-up of plasma cell dyscrasias. Diffusion-weighted imaging provides information on diffusion (restriction) of water molecules in bone marrow and in malignant infiltration. Qualitative evaluation by visually assessing images with different diffusion sensitising gradients and quantitative evaluation of the apparent diffusion coefficient are studied extensively. Dynamic contrast-enhanced imaging provides information on bone marrow vascularisation, perfusion, capillary resistance, vascular permeability and interstitial space, which are systematically altered in different disease stages and can be evaluated in a qualitative and a (semi-)quantitative manner. Both diffusion restriction and abnormal dynamic contrast-enhanced MRI parameters are early biomarkers of malignancy or disease progression in focal lesions or in regions with diffuse abnormal signal intensities. The added value for both techniques lies in better detection and/or characterisation of abnormal bone marrow otherwise missed or misdiagnosed on anatomical MRI sequences. Increased detection rates of focal lesions or diffuse bone marrow infiltration upstage patients to higher disease stages, provide earlier access to therapy and slower disease progression and allow closer monitoring of high-risk patients. Despite promising results, variations in imaging protocols, scanner types and post-processing methods are large, thus hampering universal applicability and reproducibility of quantitative imaging parameters. The myeloma response assessment and diagnosis system and the international myeloma working group provide a systematic multicentre approach on imaging and propose which parameters to use in multiple myeloma and its precursors in an attempt to overcome the pitfalls of dynamic contrast-enhanced and diffusion-weighted imaging.Single sentence summary statementDiffusion-weighted imaging and dynamic contrast-enhanced MRI provide important additional information to standard anatomical MRI techniques for diagnosis, staging and follow-up of patients with plasma cell dyscrasias, although some precautions should be taken on standardisation of imaging protocols to improve reproducibility and application in multiple centres.
Collapse
|
10
|
Lin G, Zong X, Li Y, Tan W, Sun W, Zhang S, Gan Y, Zeng H. Whole-Body MRI Is an Effective Imaging Modality for Hematological Malignancy Treatment Response Assessment: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:827777. [PMID: 35251996 PMCID: PMC8894650 DOI: 10.3389/fonc.2022.827777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of whole-body MRI (WB-MRI) for assessment of hematological malignancies' therapeutic response. METHODS PubMed, Embase, and Web of Science were searched up to August 2021 to identify studies reporting the diagnostic performance of WB-MRI for the assessment of hematological malignancies' treatment response. A bivariate random-effects model was applied for the generation of the pooled diagnostic performance. RESULTS Fourteen studies with 457 patients with lymphoma, multiple myeloma, and sarcoma (very small proportion) were analyzed. Overall pooled sensitivity and specificity of WB-MRI were 0.88 (95% CI: 0.73-0.95) and 0.86 (95% CI: 0.73-0.93), respectively. Studies using whole-body diffusion-weighted imaging (WB-DWI) showed higher sensitivity than those that did not (0.94 vs. 0.55, p = 0.02). The pooled concordance rate of WB-MRI to assess hematological malignancies' treatment response with reference standard was 0.78 (95% CI: 0.59-0.96). WB-MRI and PET/CT showed similar diagnostic performance (sensitivity [0.83 vs. 0.92, p = 0.11] and specificity [0.87 vs. 0.76, p = 0.73]). CONCLUSION WB-MRI has high diagnostic performance for hematological malignancies' treatment response assessment. The adding of WB-DWI is strongly associated with increased sensitivity.
Collapse
Affiliation(s)
- Guisen Lin
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xiaodan Zong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University (SYSU), Guangzhou, China
| | - Yaowen Li
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | - Weisheng Sun
- Shantou University Medical College, Shantou, China
| | - Siqi Zhang
- Shantou University Medical College, Shantou, China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Yungen Gan, ; Hongwu Zeng,
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Yungen Gan, ; Hongwu Zeng,
| |
Collapse
|
11
|
Nanni C, Zanoni L, Fanti S. Radiological and Nuclear Medicine Imaging of Multiple Myeloma. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Prognostic impact of posttransplant FDG PET/CT scan in multiple myeloma. Blood Adv 2021; 5:2753-2759. [PMID: 34242392 DOI: 10.1182/bloodadvances.2020004131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous disease that may be evaluated by a broad array of imaging and laboratory techniques to measure disease activity and predict prognosis. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scanning has been shown to be predictive of patient outcomes throughout the disease course. We sought to corroborate these findings by examining the prognostic impact of PET/CT scanning in the posttransplant setting. We retrospectively analyzed PET/CT scans in 229 MM patients receiving an autologous stem cell transplant (ASCT) near day 100, and correlated these findings with time to progression(TTP) and overall survival (OS) to assess the impact of day 100 PET/CT scan findings as an independent prognostic factor. The median OS for the entire cohort was 61.5 months (95% confidence interval [CI], 49-75) and the median TTP was 18.5 months (95% CI, 15.4-21.8). Among patients with abnormal day 100 PET findings (PET+), median TTP was 12.4 months vs 24 months among those with normal PET findings (PET-) (P < .0001). The median OS in the PET+ group was 46 months compared with 99 months in the PET- group (P < .0001). We conclude that an abnormal PET/CT scan near day 100 post-ASCT is predictive of shorter TTP and OS, with prognostic significance retained after adjusting for disease response and other prognostic variables in MM.
Collapse
|
13
|
Ferrarazzo G, Chiola S, Capitanio S, Donegani MI, Miceli A, Raffa S, Tagliafico AS, Morbelli S, Bauckneht M. Positron Emission Tomography (PET) Imaging of Multiple Myeloma in a Post-Treatment Setting. Diagnostics (Basel) 2021; 11:230. [PMID: 33546455 PMCID: PMC7913723 DOI: 10.3390/diagnostics11020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/01/2022] Open
Abstract
2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography/computed tomography (FDG PET/CT) has an established clinical value in the diagnosis and initial staging of multiple myeloma (MM). In the last ten years, a vast body of literature has shown that this tool can also be of high relevance for monitoring therapy responses, making it the recommended imaging approach in this field. Starting from the strengths and weaknesses of radiological imaging in MM, the present review aims to analyze FDG PET/CT's current clinical value focusing on therapy response assessment and objective interpretation criteria for therapy monitoring. Given the potential occurrence of patients with MM showing non-FDG-avid bone disease, new opportunities can be provided by non-FDG PET tracers. Accordingly, the potential role of non-FDG PET tracers in this setting has also been discussed.
Collapse
Affiliation(s)
- Giulia Ferrarazzo
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Silvia Chiola
- Department of Nuclear Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy;
| | - Selene Capitanio
- Nuclear Medicine, ASST Grande Ospedale Metropolitano Niguarda, Department of Advanced Diagnostic Therapeutic Technologies, 20162 Milan, Italy;
| | - Maria Isabella Donegani
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Alberto Miceli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Alberto Stefano Tagliafico
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Radiology Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (G.F.); (M.I.D.); (A.M.); (S.R.); (A.S.T.); (M.B.)
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|