1
|
Zhang QH, Lin SS, Zhao X, Qin Z, Ge H, Qian JX, Wang YC. Nonrigid temporal registration of multiphase CT pulmonary angiography using low-kV and low contrast: a feasibility study with dual-source CT. Clin Radiol 2025; 85:106916. [PMID: 40279855 DOI: 10.1016/j.crad.2025.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/11/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
AIM This study aimed to compare the nonrigid temporal registration of multiphase computed tomography pulmonary angiography (CTPA) with single-phase CTPA in terms of radiation dose, contrast agent usage, objective and subjective image quality. MATERIALS AND METHODS Consecutive patients suspected of acute pulmonary embolism were prospectively included in this study, and randomly received multiphase or single-phase CTPA. Regarding the contrast media, 15 mL was applied in the multiphase CTPA in comparison with 40 mL applied in the single-phase CTPA. Temporal registration was performed for multiphase CTPA during post-processing. Two experienced radiologists independently evaluated the image quality (IQ) based on objective measurements, subjective impression and diagnostic confidence. Patient demographics, scan parameters and image quality were compared between the two groups. RESULTS A total of 72 patients were analysed (37 multiphase CTPA and 35 single-phase CTPA). Positive pulmonary embolism was confirmed in five and seven patients, respectively. The two patient groups had similar demographics besides older age in those who underwent single-phase CTPA. Radiation dose and the contrast-to-noise ratio (CNR) were also similar between groups except for the CNR in the right main pulmonary artery. Both readers rated the multiphase CTPA with a statistically superior subjective IQ over the single-phase CTPA. The diagnostics confidence of the two CTPA protocols was similarly rated by one reader and slightly different according to the second reader. CONCLUSION The nonrigid temporal registration of multiphase CT pulmonary angiography could offer similar or even better image quality than the single-phase protocol and significantly reduce the amount of contrast usage.
Collapse
Affiliation(s)
- Q-H Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, China
| | - S-S Lin
- Siemens Healthineers Digital Technology(Shanghai)Co., Shanghai, 200124, China
| | - X Zhao
- Siemens Healthineers Digital Technology(Shanghai)Co., Shanghai, 200124, China
| | - Z Qin
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, China
| | - H Ge
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, China
| | - J-X Qian
- Fenghuang Street Community Health Service Center, No.2 Yongquanli, Fenghuang Road, Gulou District, Nanjing, 200124, China
| | - Y-C Wang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
2
|
de Jong CMM, Kroft LJM, van Mens TE, Huisman MV, Stöger JL, Klok FA. Modern imaging of acute pulmonary embolism. Thromb Res 2024; 238:105-116. [PMID: 38703584 DOI: 10.1016/j.thromres.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
The first-choice imaging test for visualization of thromboemboli in the pulmonary vasculature in patients with suspected acute pulmonary embolism (PE) is multidetector computed tomography pulmonary angiography (CTPA) - a readily available and widely used imaging technique. Through technological advancements over the past years, alternative imaging techniques for the diagnosis of PE have become available, whilst others are still under investigation. In particular, the evolution of artificial intelligence (AI) is expected to enable further innovation in diagnostic management of PE. In this narrative review, current CTPA techniques and the emerging technology photon-counting CT (PCCT), as well as other modern imaging techniques of acute PE are discussed, including CTPA with iodine maps based on subtraction or dual-energy acquisition, single-photon emission CT (SPECT), magnetic resonance angiography (MRA), and magnetic resonance direct thrombus imaging (MRDTI). Furthermore, potential applications of AI are discussed.
Collapse
Affiliation(s)
- C M M de Jong
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - L J M Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - T E van Mens
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - M V Huisman
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - J L Stöger
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - F A Klok
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Brendlin AS, Wrazidlo R, Almansour H, Estler A, Plajer D, Vega SGC, Klingert W, Bertolani E, Othman AE, Schenk M, Afat S. How Real Are Computed Tomography Low Dose Simulations? An Investigational In-Vivo Large Animal Study. Acad Radiol 2023; 30:1678-1694. [PMID: 36669998 DOI: 10.1016/j.acra.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVES CT low-dose simulation methods have gained significant traction in protocol development, as they lack the risk of increased patient exposure. However, in-vivo validations of low-dose simulations are as uncommon as prospective low-dose image acquisition itself. Therefore, we investigated the extent to which simulated low-dose CT datasets resemble their real-dose counterparts. MATERIALS AND METHODS Fourteen veterinarian-sedated alive pigs underwent three CT scans on the same third generation dual-source scanner with 2 months between each scan. At each time, three additional scans ensued, with mAs reduced to 50%, 25%, and 10%. All scans were reconstructed using wFBP and ADMIRE levels 1-5. Matching low-dose datasets were generated from the 100% scans using reconstruction-based and DICOM-based simulations. Objective image quality (CT numbers stability, noise, and signal-to-noise ratio) was measured via consistent regions of interest. Three radiologists independently rated all possible dataset combinations per time point for subjective image quality (-1=inferior, 0=equal, 1=superior). The points were averaged for a semiquantitative score, and inter-rater-agreement was measured using Spearman's correlation coefficient. A structural similarity index (SSIM) analyzed the voxel-wise similarity of the volumes. Adequately corrected mixed-effects analysis compared objective and subjective image quality. Multiple linear regression with three-way interactions measured the contribution of dose, reconstruction mode, simulation method, and rater to subjective image quality. RESULTS There were no significant differences between objective and subjective image quality of reconstruction-based and DICOM-based simulation on all dose levels (p≥0.137). However, both simulation methods produced significantly lower objective image quality than real-dose images below 25% mAs due to noise overestimation (p<0.001; SSIM≤89±3). Overall, inter-rater-agreement was strong (r≥0.68, mean 0.93±0.05, 95% CI 0.92-0.94; each p<0.001). In regression analysis, significant decreases in subjective image quality were observed for lower radiation doses (b ≤ -0.387, 95%CI -0.399 to -0.358; p<0.001) but not for reconstruction modes, simulation methods, raters, or three-way interactions (p≥0.103). CONCLUSION Simulated low-dose CT datasets are subjectively and objectively indistinguishable from their real-dose counterparts down to 25% mAs, making them an invaluable tool for efficient low-dose protocol development.
Collapse
Affiliation(s)
- Andreas S Brendlin
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany.
| | - Robin Wrazidlo
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany
| | - Arne Estler
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany
| | - David Plajer
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany
| | | | - Wilfried Klingert
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls University, Tuebingen, Germany
| | - Elisa Bertolani
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls University, Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany; Department of Neuroradiology, University Medical Center, Mainz, Germany
| | - Martin Schenk
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls University, Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 - Tuebingen, Germany
| |
Collapse
|
4
|
Cantarinha A, Bassil C, Savignac A, Devilder M, Maxwell F, Crézé M, Purcell YM, Bellin MF, Meyrignac O, Dillenseger JP. "Triple low" free-breathing CTPA protocol for patients with dyspnoea. Clin Radiol 2022; 77:e628-e635. [PMID: 35688771 DOI: 10.1016/j.crad.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
AIM To assess the performance of a "triple-low" free-breathing protocol for computed tomography pulmonary angiography (CTPA) evaluated on patients with dyspnoea and suspected pulmonary embolism and discuss its application in routine clinical practice for the study of the pulmonary parenchyma and vasculature. MATERIAL AND METHODS This study was conducted on a selected group of dyspnoeic patients referred for CTPA. The protocol was designed using fast free-breathing acquisition and a small, fixed volume (35 ml) of contrast agent in order to achieve a low-exposure dose. For each examination, radiodensity of the pulmonary trunk and ascending aorta, and the dose-length product (DLP) were recorded. A qualitative analysis was performed of pulmonary arterial enhancement and the pulmonary parenchyma. RESULTS This study included 134 patients. Contrast enhancement of the pulmonary arteries (409 ± 159 HU) was systematically >250 HU. The duration of acquisition ranged from 0.9 to 1.3 seconds for free-breathing imaging. The mean DLP was in the range of low-dose chest CT acquisitions (145 ± 73 mGy·cm). The analysis was deemed optimal in 90% (120/134) of cases for the pulmonary parenchyma. Sixty-nine per cent (92/134) of cases demonstrated homogeneous enhancement of the pulmonary arteries to the subsegmental level. Only 6% (8/134) of examinations were considered uninterpretable. CONCLUSION The present "triple-low" CTPA protocol allows convenient analysis of the pulmonary parenchyma and arteries without hindrance by respiratory motion artefacts in dyspnoeic patients.
Collapse
Affiliation(s)
- A Cantarinha
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - C Bassil
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - A Savignac
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - M Devilder
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - F Maxwell
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - M Crézé
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France; BioMaps, Université Paris-Saclay, Hôpital Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | - Y M Purcell
- Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - M-F Bellin
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France; BioMaps, Université Paris-Saclay, Hôpital Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | - O Meyrignac
- Service de Radiologie Générale Adulte, Hôpital Bicêtre, Hôpitaux Universitaires Paris-Sud, Département Médico Universitaire Smart Imaging, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France; BioMaps, Université Paris-Saclay, Hôpital Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | - J-P Dillenseger
- Faculté de Médecine, Maïeutique, et Sciences de la Santé, Université de Strasbourg, Strasbourg, France; ICube-UMR 7357, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Patient dose in CT angiography examinations: An institutional survey. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Determination of Contrast Timing by Time-Resolved Magnetic Resonance Angiography in Patients With Bidirectional Glenn and Hemi-Fontan Anastomoses. J Comput Assist Tomogr 2022; 46:742-746. [PMID: 35617648 DOI: 10.1097/rct.0000000000001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Children with single-ventricle congenital heart disease undergo a series of operations to maintain their pulmonary circulation including bidirectional Glenn (BDG) or hemi-Fontan in the second stage to create a superior cavopulmonary anastomosis. We aimed to optimize cardiovascular angiography protocols by determining optimal contrast timing of pulmonary and systemic circulation on magnetic resonance angiography (MRA) performed with the technique of time-resolved imaging with interleaved stochastic trajectories (TWIST). METHODS AND MATERIALS Cardiac TWIST MRA with lower extremity (LE) contrast injection was analyzed in 92 consecutive patients with a BDG or hemi-Fontan anastomosis. Contrast arrival time to inferior vena cava was set to zero to determine the relative time-to-peak (TTP) of the target vessels. Time-to-peak of each vessel was compared by age (<2 or ≥2 y), ejection fraction (<54% or ≥54%), the median values of heart rate (<111 or ≥111 beats per minute), body surface area (BSA, <0.59 or ≥0.59), cardiac index (<6.04 or ≥6.04), and indexed ascending aorta flow (AscAo_i, <5.3 or ≥5.3). The TTP of the vessels was also correlated with the volumetric parameters. RESULTS The mean age of 92 patients (32 female, 60 male) was 3.1 years (0.7-5.6 years). With LE injection, the first peak was depicted in AscAo. Time-to-peak of the pulmonary arteries was approximately 9 seconds later than AscAo. The TTP difference between pulmonary arteries and AscAo was shorter in high heart rate group (8.3 vs 10 seconds, P < 0.001). The TTP difference between AscAo and the mean of pulmonary arteries was significantly shorter in high cardiac index group (8.4 vs 9.9 seconds, P < 0.01) and high AscAo_i group (8.7 vs 9.7 seconds, P = 0.03). The TTP differences were not significant by age, ejection fraction, and BSA. Cardiac index and AscAo_i were negatively correlated with all TTPs except AscAo. The ejection fraction, stroke volume, and atrioventricular regurgitation fraction did not correlate with the TTP. CONCLUSIONS In patients with BDG or hemi-Fontan anastomosis, TTP of the pulmonary arteries on TWIST MRA via LE intravenous injection is approximately 9 seconds later than AscAo, approximately 8 and 10 seconds later in high and low heart rate groups, respectively. Cardiac index and AscAo_i have less effect on the TTP than the heart rate. There was no TTP difference of the pulmonary arteries by age, BSA, and ejection fraction and no correlation with ejection fraction, stroke volume, and atrioventricular regurgitation fraction. These data can be used to guide timing of pulmonary arterial enhancement of single-ventricle patients after BDG or hemi-Fontan anastomosis.
Collapse
|
7
|
Masuda S, Yamada Y, Minamishima K, Owaki Y, Yamazaki A, Jinzaki M. Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: Comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Eur J Radiol 2022; 149:110198. [DOI: 10.1016/j.ejrad.2022.110198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 01/15/2023]
|
8
|
Diagnostic Performance of a Contrast-Enhanced Ultra-Low-Dose High-Pitch CT Protocol with Reduced Scan Range for Detection of Pulmonary Embolisms. Diagnostics (Basel) 2021; 11:diagnostics11071251. [PMID: 34359338 PMCID: PMC8304674 DOI: 10.3390/diagnostics11071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: To evaluate the diagnostic performance of a simulated ultra-low-dose (ULD), high-pitch computed tomography pulmonary angiography (CTPA) protocol with low tube current (mAs) and reduced scan range for detection of pulmonary embolisms (PE). (2) Methods: We retrospectively included 130 consecutive patients (64 ± 16 years, 69 female) who underwent clinically indicated high-pitch CTPA examination for suspected acute PE on a 3rd generation dual-source CT scanner (SOMATOM FORCE, Siemens Healthineers, Forchheim, Germany). ULD datasets with a realistic simulation of 25% mAs, reduced scan range (aortic arch-basal pericardium), and Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 5 were created. The effective radiation dose (ED) of both datasets (standard and ULD) was estimated using a dedicated dosimetry software solution. Subjective image quality and diagnostic confidence were evaluated independently by three reviewers using a 5-point Likert scale. Objective image quality was compared using noise measurements. For assessment of diagnostic accuracy, patients and pulmonary vessels were reviewed binarily for affection by PE, using standard CTPA protocol datasets as the reference standard. Percentual affection of pulmonary vessels by PE was computed for disease severity (modified Qanadli score). (3) Results: Mean ED in ULD protocol was 0.7 ± 0.3 mSv (16% of standard protocol: 4.3 ± 1.7 mSv, p < 0.001, r > 0.5). Comparing ULD to standard protocol, subjective image quality and diagnostic confidence were comparably good (p = 0.486, r > 0.5) and image noise was significantly lower in ULD (p < 0.001, r > 0.5). A total of 42 patients (32.2%) were affected by PE. ULD protocol had a segment-based false-negative rate of only 0.1%. Sensitivity for detection of any PE was 98.9% (95% CI, 97.2-99.7%), specificity was 100% (95% CI, 99.8-100%), and overall accuracy was 99.9% (95% CI, 98.6-100%). Diagnoses correlated strongly between ULD and standard protocol (Chi-square (1) = 42, p < 0.001) with a decrease in disease severity of only 0.48% (T = 1.667, p = 0.103). (4) Conclusions: Compared to a standard CTPA protocol, the proposed ULD protocol proved reliable in detecting and ruling out acute PE with good levels of image quality and diagnostic confidence, as well as significantly lower image noise, at 0.7 ± 0.3 mSv (84% dose reduction).
Collapse
|
9
|
Simulated Radiation Dose Reduction in Whole-Body CT on a 3rd Generation Dual-Source Scanner: An Intraindividual Comparison. Diagnostics (Basel) 2021; 11:diagnostics11010118. [PMID: 33450942 PMCID: PMC7828410 DOI: 10.3390/diagnostics11010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
To evaluate the effect of radiation dose reduction on image quality and diagnostic confidence in contrast-enhanced whole-body computed tomography (WBCT) staging. We randomly selected March 2016 for retrospective inclusion of 18 consecutive patients (14 female, 60 ± 15 years) with clinically indicated WBCT staging on the same 3rd generation dual-source CT. Using low-dose simulations, we created data sets with 100, 80, 60, 40, and 20% of the original radiation dose. Each set was reconstructed using filtered back projection (FBP) and Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 1–5, resulting in 540 datasets total. ADMIRE 2 was the reference standard for intraindividual comparison. The effective radiation dose was calculated using commercially available software. For comparison of objective image quality, noise assessments of subcutaneous adipose tissue regions were performed automatically using the software. Three radiologists blinded to the study evaluated image quality and diagnostic confidence independently on an equidistant 5-point Likert scale (1 = poor to 5 = excellent). At 100%, the effective radiation dose in our population was 13.3 ± 9.1 mSv. At 20% radiation dose, it was possible to obtain comparably low noise levels when using ADMIRE 5 (p = 1.000, r = 0.29). We identified ADMIRE 3 at 40% radiation dose (5.3 ± 3.6 mSv) as the lowest achievable radiation dose with image quality and diagnostic confidence equal to our reference standard (p = 1.000, r > 0.4). The inter-rater agreement for this result was almost perfect (ICC ≥ 0.958, 95% CI 0.909–0.983). On a 3rd generation scanner, it is feasible to maintain good subjective image quality, diagnostic confidence, and image noise in single-energy WBCT staging at dose levels as low as 40% of the original dose (5.3 ± 3.6 mSv), when using ADMIRE 3.
Collapse
|