1
|
Wang C, Chen X, Luo H, Liu Y, Meng R, Wang M, Liu S, Xu G, Ren J, Zhou P. Development and Internal Validation of a Preoperative Prediction Model for Sentinel Lymph Node Status in Breast Cancer: Combining Radiomics Signature and Clinical Factors. Front Oncol 2021; 11:754843. [PMID: 34820327 PMCID: PMC8606782 DOI: 10.3389/fonc.2021.754843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To develop and internally validate a nomogram combining radiomics signature of primary tumor and fibroglandular tissue (FGT) based on pharmacokinetic dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical factors for preoperative prediction of sentinel lymph node (SLN) status in breast cancer patients. Methods This study retrospectively enrolled 186 breast cancer patients who underwent pretreatment pharmacokinetic DCE-MRI with positive (n = 93) and negative (n = 93) SLN. Logistic regression models and radiomics signatures of tumor and FGT were constructed after feature extraction and selection. The radiomics signatures were further combined with independent predictors of clinical factors for constructing a combined model. Prediction performance was assessed by receiver operating characteristic (ROC), calibration, and decision curve analysis. The areas under the ROC curve (AUCs) of models were corrected by 1,000-times bootstrapping method and compared by Delong's test. The added value of each independent model or their combinations was also assessed by net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices. This report referred to the "Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis" (TRIPOD) statement. Results The AUCs of the tumor radiomic model (eight features) and the FGT radiomic model (three features) were 0.783 (95% confidence interval [CI], 0.717-0.849) and 0.680 (95% CI, 0.604-0.757), respectively. A higher AUC of 0.799 (95% CI, 0.737-0.862) was obtained by combining tumor and FGT radiomics signatures. By further combining tumor and FGT radiomics signatures with progesterone receptor (PR) status, a nomogram was developed and showed better discriminative ability for SLN status [AUC 0.839 (95% CI, 0.783-0.895)]. The IDI and NRI indices also showed significant improvement when combining tumor, FGT, and PR compared with each independent model or a combination of any two of them (all p < 0.05). Conclusion FGT and clinical factors improved the prediction performance of SLN status in breast cancer. A nomogram integrating the DCE-MRI radiomics signature of tumor and FGT and PR expression achieved good performance for the prediction of SLN status, which provides a potential biomarker for clinical treatment decision-making.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Chen
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongbing Luo
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Liu
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruirui Meng
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Wang
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyun Liu
- Pharmaceutical Diagnostics, General Electric (GE) Company (Healthcare), Beijing, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Ren
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhou
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Jarrett AM, Kazerouni AS, Wu C, Virostko J, Sorace AG, DiCarlo JC, Hormuth DA, Ekrut DA, Patt D, Goodgame B, Avery S, Yankeelov TE. Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting. Nat Protoc 2021; 16:5309-5338. [PMID: 34552262 PMCID: PMC9753909 DOI: 10.1038/s41596-021-00617-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of scanning, postprocessing requires 2-3 h, and the model calibration and prediction components require ~10 h per patient depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, reaction-diffusion mathematical model to these data. Successful application of the protocol results in coregistered MRI data from at least two scan visits that quantifies an individual tumor's size, cellularity and vascular properties. This enables a spatially resolved prediction of how a particular patient's tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is required to carry out this protocol.
Collapse
Affiliation(s)
- Angela M Jarrett
- Oden Institute for Computational Engineering and Sciences, Austin, TX, USA
- Livestrong Cancer Institutes, Austin, TX, USA
| | - Anum S Kazerouni
- Departments of Biomedical Engineering, Austin, TX, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, Austin, TX, USA
| | - John Virostko
- Livestrong Cancer Institutes, Austin, TX, USA
- Departments of Diagnostic Medicine, Austin, TX, USA
- Departments of Oncology, Austin, TX, USA
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie C DiCarlo
- Oden Institute for Computational Engineering and Sciences, Austin, TX, USA
- Livestrong Cancer Institutes, Austin, TX, USA
| | - David A Hormuth
- Oden Institute for Computational Engineering and Sciences, Austin, TX, USA
- Livestrong Cancer Institutes, Austin, TX, USA
| | - David A Ekrut
- Oden Institute for Computational Engineering and Sciences, Austin, TX, USA
| | | | - Boone Goodgame
- Departments of Oncology, Austin, TX, USA
- Departments of Internal Medicine, The University of Texas at Austin, Austin, Texas, USA
- Seton Hospital, Austin, TX, USA
| | - Sarah Avery
- Austin Radiological Association, Austin, TX, USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, Austin, TX, USA.
- Livestrong Cancer Institutes, Austin, TX, USA.
- Departments of Biomedical Engineering, Austin, TX, USA.
- Departments of Diagnostic Medicine, Austin, TX, USA.
- Departments of Oncology, Austin, TX, USA.
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|