1
|
Reiter C, Reiter G, Kolesnik E, Scherr D, Schmidt A, Fuchsjäger M, Reiter U. 4D flow MRI-based grading of left ventricular diastolic dysfunction: a validation study against echocardiography. Eur Radiol 2025:10.1007/s00330-025-11703-0. [PMID: 40413662 DOI: 10.1007/s00330-025-11703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES To assess the feasibility and accuracy of 4D flow MRI-based grading of left ventricular diastolic dysfunction, using echocardiography as the reference method. METHODS Between October 2016 and February 2022, subjects were prospectively recruited for transthoracic echocardiographic evaluation of left ventricular diastolic function and 4D flow MRI at 3 T. Echocardiographic grading of diastolic dysfunction was performed according to the multiparametric, threshold-based 2016 ASE/EACVI approach. Volumetric and echo-equivalent peak velocity grading parameters were evaluated from 4D flow magnitude and velocity data, respectively. Duration of vortical blood flow along the main pulmonary artery (tvortex) was employed as a surrogate grading parameter for echocardiographic tricuspid regurgitant peak velocity (TR). Correlations between grading parameters were analysed; agreement in grading of diastolic dysfunction between methods was assessed using a 5 × 5 contingency table analysis. RESULTS The study population consisted of 94 participants (mean age, 62 ± 12 years, 50 females, 34 with structural heart disease). All volumetric and echo-equivalent 4D flow grading parameters demonstrated strong to very strong correlations with echocardiography (r = 0.75-0.92). Volumetric parameters showed significant biases between 4D flow and echocardiography. Employing bias-adjusted 4D flow grading cutoffs for volumetric parameter, echo-equivalent cutoffs for diastolic transmitral and myocardial peak velocities, and tvortex > 15% as a surrogate cutoff for TR > 2.8 m/s, nearly perfect agreement in diastolic dysfunction grading between methods was observed (weighted kappa = 0.84). There was no evidence for over- or underestimation of grades by 4D flow (p = 0.53). CONCLUSION Grading of left ventricular diastolic dysfunction from a single 4D flow measurement is feasible and shows nearly perfect agreement with echocardiography. KEY POINTS Question The lack of comparison studies with echocardiography currently limits cardiac MRI-based grading of diastolic dysfunction. Could 4D flow MRI serve as a viable technique? Findings A single 4D flow MRI measurement allows multiparametric grading of left ventricular diastolic dysfunction in nearly perfect agreement with echocardiography. Clinical relevance Agreement between 4D flow MRI and echocardiographic grading of left ventricular diastolic dysfunction is comparable to that observed in repeated echocardiographic evaluations, suggesting 4D flow as a viable alternative to echocardiography in selected patients, especially when comprehensive MRI is already performed.
Collapse
Affiliation(s)
- Clemens Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gert Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- Research and Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Li G, Zhou M, Huang X, Ji C, Fan T, Xu J, Xiong H, Huang Y. Time delays between physiological signals in interpreting the body's responses to intermittent hypoxia in obstructive sleep apnea. Physiol Meas 2024; 45:055008. [PMID: 38688301 DOI: 10.1088/1361-6579/ad45ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Objective.Intermittent hypoxia, the primary pathology of obstructive sleep apnea (OSA), causes cardiovascular responses resulting in changes in hemodynamic parameters such as stroke volume (SV), blood pressure (BP), and heart rate (HR). However, previous studies have produced very different conclusions, such as suggesting that SV increases or decreases during apnea. A key reason for drawing contrary conclusions from similar measurements may be due to ignoring the time delay in acquiring response signals. By analyzing the signals collected during hypoxia, we aim to establish criteria for determining the delay time between the onset of apnea and the onset of physiological parameter response.Approach.We monitored oxygen saturation (SpO2), transcutaneous oxygen pressure (TcPO2), and hemodynamic parameters SV, HR, and BP, during sleep in 66 patients with different OSA severity to observe body's response to hypoxia and determine the delay time of above parameters. Data were analyzed using the Kruskal-Wallis test, Quade test, and Spearman test.Main results.We found that simultaneous acquisition of various parameters inevitably involved varying degrees of response delay (7.12-25.60 s). The delay time of hemodynamic parameters was significantly shorter than that of SpO2and TcPO2(p< 0.01). OSA severity affected the response delay of SpO2, TcPO2, SV, mean BP, and HR (p< 0.05). SV delay time was negatively correlated with the apnea-hypopnea index (r= -0.4831,p< 0.0001).Significance.The real body response should be determined after removing the effect of delay time, which is the key to solve the problem of drawing contradictory conclusions from similar studies. The methods and important findings presented in this study provide key information for revealing the true response of the cardiovascular system during hypoxia, indicating the importance of proper signal analysis for correctly interpreting the cardiovascular hemodynamic response phenomena and exploring their physiological and pathophysiological mechanisms.
Collapse
Affiliation(s)
- Geng Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| | - Mengwei Zhou
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xiaoqing Huang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| | - Changjin Ji
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| | - Tingting Fan
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jinkun Xu
- Department of Otorhinopharyngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Huahui Xiong
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yaqi Huang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
3
|
Reiter C, Reiter G, Kräuter C, Scherr D, Schmidt A, Fuchsjäger M, Reiter U. Evaluation of left ventricular and left atrial volumetric function from native MR multislice 4D flow magnitude data. Eur Radiol 2024; 34:981-993. [PMID: 37580598 PMCID: PMC10853296 DOI: 10.1007/s00330-023-10017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To assess the feasibility, precision, and accuracy of left ventricular (LV) and left atrial (LA) volumetric function evaluation from native magnetic resonance (MR) multislice 4D flow magnitude images. MATERIALS & METHODS In this prospective study, 60 subjects without signs or symptoms of heart failure underwent 3T native cardiac MR multislice 4D flow and bSSFP-cine realtime imaging. LV and LA volumetric function parameters were evaluated from 4D flow magnitude (4D flow-cine) and bSSFP-cine data using standard software to obtain end-diastolic volume (EDV), end-systolic volume (ESV), ejection-fraction (EF), stroke-volume (SV), LV muscle mass (LVM), LA maximum volume, LA minimum volume, and LA total ejection fraction (LATEF). Stroke volumes derived from both imaging methods were further compared to 4D pulmonary artery flow-derived net forward volumes (NFV). Methods were compared by correlation and Bland-Altman analysis. RESULTS Volumetric function parameters from 4D flow-cine and bSSFP-cine showed high to very high correlations (r = 0.83-0.98). SV, LA volumes and LATEF did not differ between methods. LV end-diastolic and end-systolic volumes were slightly underestimated (EDV: -2.9 ± 5.8 mL; ESV: -2.3 ± 3.8 mL), EF was slightly overestimated (EF: 0.9 ± 2.6%), and LV mass was considerably overestimated (LVM: 39.0 ± 11.4 g) by 4D flow-cine imaging. SVs from both methods correlated very highly with NFV (r = 0.91 in both cases) and did not differ from NFV. CONCLUSION Native multislice 4D flow magnitude data allows precise evaluation of LV and LA volumetric parameters; however, apart from SV, LV volumetric parameters demonstrate bias and need to be referred to their respective normal values. CLINICAL RELEVANCE STATEMENT Volumetric function assessment from native multislice 4D flow magnitude images can be performed with routinely used clinical software, facilitating the application of 4D flow as a one-stop-shop functional cardiac MR exam, providing consistent, simultaneously acquired, volume and flow data. KEY POINTS • Native multislice 4D flow imaging allows evaluation of volumetric left ventricular and atrial function parameters. • Left ventricular and left atrial function parameters derived from native multislice 4D flow data correlate highly with corresponding standard cine-derived parameters. • Multislice 4D flow-derived volumetric stroke volume and net forward volume do not differ.
Collapse
Affiliation(s)
- Clemens Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9/P, 8036, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gert Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9/P, 8036, Graz, Austria
- Research and Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria
| | - Corina Kräuter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9/P, 8036, Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9/P, 8036, Graz, Austria
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9/P, 8036, Graz, Austria.
| |
Collapse
|
4
|
Reiter C, Reiter G, Kräuter C, Kolesnik E, Greiser A, Scherr D, Schmidt A, Fuchsjäger M, Reiter U. Impact of the evaluation method on 4D flow-derived diastolic transmitral and myocardial peak velocities: Comparison with echocardiography. Eur J Radiol 2024; 170:111247. [PMID: 38071909 DOI: 10.1016/j.ejrad.2023.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
PURPOSE To compare agreement of different evaluation methods of magnetic resonance (MR) 4D flow-derived diastolic transmitral and myocardial peak velocities as well as their ratios, using echocardiography as reference. METHODS In this prospective study, 60 subjects without symptoms of cardiovascular disease underwent echocardiography and non-contrast 3 T MR 4D flow imaging of the heart. Early- (E) and late-diastolic (A) transmitral peak filling velocities were evaluated from 4D flow data using three different strategies: 1) at the mitral valve tips in short-axis orientation (SA-method), 2) between the mitral valve tips in 4-chamber orientation (4-chamber-method), and 3) as maximal velocities in the transmitral inflow volume (max-velocity-method). Septal, lateral and average early-diastolic myocardial peak velocities (e') were derived from the myocardial tissue in the vicinity of the mitral valve. 4D flow parameters were compared with echocardiography by correlation and Bland-Altman analysis. RESULTS All 4D flow-derived E, A and E/A values correlated with echocardiography (r = 0.65-0.73, 0.75-0.83 and 0.74-0.86, respectively). While the SA- and 4-chamber-methods substantially underestimated E and A compared to echocardiography (p < 0.001), the max-velocity-method provided E (p = 0.13) and E/A (p = 0.07) without significant bias. Septal, lateral and average e' from 4D flow as well as the max-velocity-method-derived E/e' correlated with echocardiographic measurements (r = 0.64-0.81) and showed no significant bias (p = 0.26-0.54). CONCLUSION MR 4D flow imaging allows precise and accurate evaluation of transmitral and myocardial peak velocities for characterization of LV diastolic function without significant bias to echocardiography, when transmitral velocities are assessed from the transmitral inflow volume. This enables the use of validated echocardiography threshold values.
Collapse
Affiliation(s)
- Clemens Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria; Division of Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | - Gert Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria; Research and Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria.
| | - Corina Kräuter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria.
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | | | - Daniel Scherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria.
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria.
| |
Collapse
|
5
|
Hosokawa T, Kawakami H, Tanabe Y, Fukuyama N, Yoshida K, Ohara K, Kitamura T, Kawaguchi N, Kido T, Nagai T, Inoue K, Yamaguchi O, Kido T. Left atrial strain assessment using cardiac computed tomography in patients with hypertrophic cardiomyopathy. Jpn J Radiol 2023:10.1007/s11604-023-01401-6. [PMID: 36811719 PMCID: PMC10366261 DOI: 10.1007/s11604-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE To evaluate left atrial (LA) function in patients with hypertrophic cardiomyopathy (HCM) by LA strain assessment using cardiac computed tomography (CT-derived LA strain). MATERIALS AND METHODS This was a retrospective study of 34 patients with HCM and 31 non-HCM patients who underwent cardiac computed tomography (CT) using retrospective electrocardiogram-gated mode. CT images were reconstructed every 5% (0-95%) of the RR intervals. CT-derived LA strain (reservoir [LASr], conduit [LASc], and booster pump strain [LASp]) were semi-automatically analyzed using a dedicated workstation. We also measured the left atrial volume index (LAVI) and left ventricular longitudinal strain (LVLS) for the left atrial and ventricular functional parameters to assess the relationship with CT-derived LA strain. RESULTS CT-derived LA strain significantly correlated with LAVI: r = - 0.69, p < 0.001 for LASr; r = - 0.70, p < 0.001 for LASp; and r = - 0.35, p = 0.004 for LASc. CT-derived LA strain also significantly correlated with LVLS: r = - 0.62, p < 0.001 for LASr; r = - 0.67, p < 0.001 for LASc; and r = - 0.42, p = 0.013 for LASp. CT-derived LA strain in patients with HCM was significantly lower than that in non-HCM patients: LASr (20.8 ± 7.6 vs. 31.7 ± 6.1%, p < 0.001); LASc (7.9 ± 3.4 vs. 14.2 ± 5.3%, p < 0.001); and LASp (12.8 ± 5.7 vs. 17.6 ± 4.3%, p < 0.001). Additionally, CT-derived LA strain showed high reproducibility; inter-observer correlation coefficients were 0.94, 0.90, and 0.89 for LASr, LASc, and LASp, respectively. CONCLUSION CT-derived LA strain is feasible for quantitative assessment of left atrial function in patients with HCM.
Collapse
Affiliation(s)
- Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Kawakami
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Naoki Fukuyama
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kentaro Ohara
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takuya Kitamura
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takayuki Nagai
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Katsuji Inoue
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
6
|
Corrado C, Roney CH, Razeghi O, Lemus JAS, Coveney S, Sim I, Williams SE, O'Neill MD, Wilkinson RD, Clayton RH, Niederer SA. Quantifying the impact of shape uncertainty on predicted arrhythmias. Comput Biol Med 2023; 153:106528. [PMID: 36634600 DOI: 10.1016/j.compbiomed.2022.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.
Collapse
Affiliation(s)
- Cesare Corrado
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom.
| | - Caroline H Roney
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom; School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Orod Razeghi
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom; UCL Centre for Advanced Research Computing, London, United Kingdom
| | - Josè Alonso Solís Lemus
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Sam Coveney
- Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Sim
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Steven E Williams
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Mark D O'Neill
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Richard D Wilkinson
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard H Clayton
- Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Steven A Niederer
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| |
Collapse
|