1
|
Ichikawa Y, Kanii Y, Yamazaki A, Kobayashi M, Domae K, Nagata M, Sakuma H. The Usefulness of Low-Kiloelectron Volt Virtual Monochromatic Contrast-Enhanced Computed Tomography with Deep Learning Image Reconstruction Technique in Improving the Delineation of Pancreatic Ductal Adenocarcinoma. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1236-1244. [PMID: 39136827 PMCID: PMC11950492 DOI: 10.1007/s10278-024-01214-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 03/29/2025]
Abstract
To evaluate the usefulness of low-keV multiphasic computed tomography (CT) with deep learning image reconstruction (DLIR) in improving the delineation of pancreatic ductal adenocarcinoma (PDAC) compared to conventional hybrid iterative reconstruction (HIR). Thirty-five patients with PDAC who underwent multiphasic CT were retrospectively evaluated. Raw data were reconstructed with two energy levels (40 keV and 70 keV) of virtual monochromatic imaging (VMI) using HIR (ASiR-V50%) and DLIR (TrueFidelity-H). Contrast-to-noise ratio (CNRtumor) was calculated from the CT values within regions of interest in tumor and normal pancreas in the pancreatic parenchymal phase images. Lesion conspicuity of PDAC in pancreatic parenchymal phase on 40-keV HIR, 40-keV DLIR, and 70-keV DLIR images was qualitatively rated on a 5-point scale, using 70-keV HIR images as reference (score 1 = poor; score 3 = equivalent to reference; score 5 = excellent) by two radiologists. CNRtumor of 40-keV DLIR images (median 10.4, interquartile range (IQR) 7.8-14.9) was significantly higher than that of the other VMIs (40 keV HIR, median 6.2, IQR 4.4-8.5, P < 0.0001; 70-keV DLIR, median 6.3, IQR 5.1-9.9, P = 0.0002; 70-keV HIR, median 4.2, IQR 3.1-6.1, P < 0.0001). CNRtumor of 40-keV DLIR images were significantly better than those of the 40-keV HIR and 70-keV HIR images by 72 ± 22% and 211 ± 340%, respectively. Lesion conspicuity scores on 40-keV DLIR images (observer 1, 4.5 ± 0.7; observer 2, 3.4 ± 0.5) were significantly higher than on 40-keV HIR (observer 1, 3.3 ± 0.9, P < 0.0001; observer 2, 3.1 ± 0.4, P = 0.013). DLIR is a promising reconstruction method to improve PDAC delineation in 40-keV VMI at the pancreatic parenchymal phase compared to conventional HIR.
Collapse
Affiliation(s)
- Yasutaka Ichikawa
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoshinori Kanii
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akio Yamazaki
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mai Kobayashi
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kensuke Domae
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Motonori Nagata
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Barat M, Greffier J, Si-Mohamed S, Dohan A, Pellat A, Frandon J, Calame P, Soyer P. CT Imaging of the Pancreas: A Review of Current Developments and Applications. Can Assoc Radiol J 2025:8465371251319965. [PMID: 39985297 DOI: 10.1177/08465371251319965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer continues to pose daily challenges to clinicians, radiologists, and researchers. These challenges are encountered at each stage of pancreatic cancer management, including early detection, definite characterization, accurate assessment of tumour burden, preoperative planning when surgical resection is possible, prediction of tumour aggressiveness, response to treatment, and detection of recurrence. CT imaging of the pancreas has made major advances in recent years through innovations in research and clinical practice. Technical advances in CT imaging, often in combination with imaging biomarkers, hold considerable promise in addressing such challenges. Ongoing research in dual-energy and spectral photon-counting computed tomography, new applications of artificial intelligence and image rendering have led to innovative implementations that allow now a more precise diagnosis of pancreatic cancer and other diseases affecting this organ. This article aims to explore the major research initiatives and technological advances that are shaping the landscape of CT imaging of the pancreas. By highlighting key contributions in diagnostic imaging, artificial intelligence, and image rendering, this article provides a comprehensive overview of how these innovations are enhancing diagnostic precision and improving outcome in patients with pancreatic diseases.
Collapse
Affiliation(s)
- Maxime Barat
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Joël Greffier
- Department of Medical Imaging, PRIM Platform, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, IMAGINE UR UM 103, Nîmes, France
| | - Salim Si-Mohamed
- University of Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, Auvergne-Rhône-Alpes, France
| | - Anthony Dohan
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Gastroenterology, Endoscopy and Digestive Oncology Unit, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Julien Frandon
- Department of Medical Imaging, PRIM Platform, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, IMAGINE UR UM 103, Nîmes, France
| | - Paul Calame
- Department of Radiology, University of Franche-Comté, CHRU Besançon, Besançon, France
- EA 4662 Nanomedicine Lab, Imagery and Therapeutics, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| |
Collapse
|
3
|
Li S, Yang X, Cao Y, Yuan L, Lu T, Wang Y, Zhao J, Zhang W, Zhou J, Zhang G. Reduced-dose CT scan of colorectal cancer. Abdom Radiol (NY) 2025:10.1007/s00261-024-04660-7. [PMID: 39794537 DOI: 10.1007/s00261-024-04660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/13/2025]
Affiliation(s)
- Shenglin Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Lanzhou University, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xinmei Yang
- Lanzhou University, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Yuntai Cao
- Qinghai University Affiliated Hospital, Xining, China
| | - Long Yuan
- Lanzhou University, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Ting Lu
- Lanzhou University, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Yuxuan Wang
- Qinghai University Affiliated Hospital, Xining, China
| | - Jun Zhao
- Lanzhou University Second Hospital, Lanzhou, China
| | | | - Junlin Zhou
- Lanzhou University, Lanzhou, China.
- Lanzhou University Second Hospital, Lanzhou, China.
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Mileto A, Yu L, Revels JW, Kamel S, Shehata MA, Ibarra-Rovira JJ, Wong VK, Roman-Colon AM, Lee JM, Elsayes KM, Jensen CT. State-of-the-Art Deep Learning CT Reconstruction Algorithms in Abdominal Imaging. Radiographics 2024; 44:e240095. [PMID: 39612283 PMCID: PMC11618294 DOI: 10.1148/rg.240095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 12/01/2024]
Abstract
The implementation of deep neural networks has spurred the creation of deep learning reconstruction (DLR) CT algorithms. DLR CT techniques encompass a spectrum of deep learning-based methodologies that operate during the different steps of the image creation, prior to or after the traditional image formation process (eg, filtered backprojection [FBP] or iterative reconstruction [IR]), or alternatively by fully replacing FBP or IR techniques. DLR algorithms effectively facilitate the reduction of image noise associated with low photon counts from reduced radiation dose protocols. DLR methods have emerged as an effective solution to ameliorate limitations observed with prior CT image reconstruction algorithms, including FBP and IR algorithms, which are not able to preserve image texture and diagnostic performance at low radiation dose levels. An additional advantage of DLR algorithms is their high reconstruction speed, hence targeting the ideal triad of features for a CT image reconstruction (ie, the ability to consistently provide diagnostic-quality images and achieve radiation dose imaging levels as low as reasonably possible, with high reconstruction speed). An accumulated body of evidence supports the clinical use of DLR algorithms in abdominal imaging across multiple CT imaging tasks. The authors explore the technical aspects of DLR CT algorithms and examine various approaches to image synthesis in DLR creation. The clinical applications of DLR algorithms are highlighted across various abdominal CT imaging domains, with emphasis on the supporting evidence for diverse clinical tasks. An overview of the current limitations of and outlook for DLR algorithms for CT is provided. ©RSNA, 2024.
Collapse
Affiliation(s)
- Achille Mileto
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Lifeng Yu
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Jonathan W. Revels
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Serageldin Kamel
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Mostafa A. Shehata
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Juan J. Ibarra-Rovira
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Vincenzo K. Wong
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Alicia M. Roman-Colon
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Jeong Min Lee
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Khaled M. Elsayes
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Corey T. Jensen
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| |
Collapse
|
5
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Lin YH, Su AC, Ng SH, Shen MR, Wu YJ, Chen AC, Lee CW, Lin YC. Insights about cervical lymph nodes: Evaluating deep learning-based reconstruction for head and neck computed tomography scan. Eur J Radiol Open 2024; 12:100534. [PMID: 39022614 PMCID: PMC467078 DOI: 10.1016/j.ejro.2023.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 07/20/2024] Open
Abstract
Purpose This study aimed to investigate differences in cervical lymph node image quality on dual-energy computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid iterative reconstruction (IR), and deep learning-based image reconstruction (DLIR) in patients with head and neck cancer. Method Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node sharpness was evaluated using full width at half maximum. Results DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise ratio (11.5-105.6 %) and contrast-to-noise ratio (10.5-107.5 %) compared with FBP and ASiR-V, for cervical lymph nodes (p < 0.001). Further, 0.625-mm-thick images reconstructed using DLIR-medium and DLIR-high had a lower noise than 2.5-mm-thick images reconstructed using FBP and ASiR-V. The lymph node margins and vessels on DLIR-medium and DLIR-high were sharper than those on FBP and ASiR-V (p < 0.05). Both readers agreed that DLIR had a better image quality than the conventional reconstruction algorithms. Conclusion DLIR-medium and -high provided superior cervical lymph node image quality in head and neck CT. Improved image quality affords thin-slice DLIR images for dose-reduction protocols in the future.
Collapse
Affiliation(s)
- Yu-Han Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - An-Chi Su
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Min-Ru Shen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Jie Wu
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | | | | | - Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Lee DH, Lee JM, Lee CH, Afat S, Othman A. Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT. Radiol Artif Intell 2024; 6:e230192. [PMID: 38231025 PMCID: PMC10982822 DOI: 10.1148/ryai.230192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Purpose To compare the image quality and diagnostic capability in detecting malignant liver tumors of low-dose CT (LDCT, 33% dose) with deep learning-based denoising (DLD) and standard-dose CT (SDCT, 100% dose) with model-based iterative reconstruction (MBIR). Materials and Methods In this prospective, multicenter, noninferiority study, individuals referred for liver CT scans were enrolled from three tertiary referral hospitals between February 2021 and August 2022. All liver CT scans were conducted using a dual-source scanner with the dose split into tubes A (67% dose) and B (33% dose). Blended images from tubes A and B were created using MBIR to produce SDCT images, whereas LDCT images used data from tube B and were reconstructed with DLD. The noise in liver images was measured and compared between imaging techniques. The diagnostic performance of each technique in detecting malignant liver tumors was evaluated by three independent radiologists using jackknife alternative free-response receiver operating characteristic analysis. Noninferiority of LDCT compared with SDCT was declared when the lower limit of the 95% CI for the difference in figure of merit (FOM) was greater than -0.10. Results A total of 296 participants (196 men, 100 women; mean age, 60.5 years ± 13.3 [SD]) were included. The mean noise level in the liver was significantly lower for LDCT (10.1) compared with SDCT (10.7) (P < .001). Diagnostic performance was assessed in 246 participants (108 malignant tumors in 90 participants). The reader-averaged FOM was 0.880 for SDCT and 0.875 for LDCT (P = .35). The difference fell within the noninferiority margin (difference, -0.005 [95% CI: -0.024, 0.012]). Conclusion Compared with SDCT with MBIR, LDCT using 33% of the standard radiation dose had reduced image noise and comparable diagnostic performance in detecting malignant liver tumors. Keywords: CT, Abdomen/GI, Liver, Comparative Studies, Diagnosis, Reconstruction Algorithms Clinical trial registration no. NCT05804799 © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Dong Ho Lee
- From the Departments of Radiology of Seoul National University
Hospital, Seoul, South Korea (D.H.L., J.M.L.); Seoul National University
Hospital, Seoul National University College of Medicine, 101 Daehak-ro,
Jongno-gu, Seoul 03080, South Korea (D.H.L., J.M.L.); Korea University Guro
Hospital, Korea University Medicine, Seoul, South Korea (C.H.L.); and
Tübingen University Hospital, Tübingen, Germany (S.A.,
A.O.)
| | - Jeong Min Lee
- From the Departments of Radiology of Seoul National University
Hospital, Seoul, South Korea (D.H.L., J.M.L.); Seoul National University
Hospital, Seoul National University College of Medicine, 101 Daehak-ro,
Jongno-gu, Seoul 03080, South Korea (D.H.L., J.M.L.); Korea University Guro
Hospital, Korea University Medicine, Seoul, South Korea (C.H.L.); and
Tübingen University Hospital, Tübingen, Germany (S.A.,
A.O.)
| | - Chang Hee Lee
- From the Departments of Radiology of Seoul National University
Hospital, Seoul, South Korea (D.H.L., J.M.L.); Seoul National University
Hospital, Seoul National University College of Medicine, 101 Daehak-ro,
Jongno-gu, Seoul 03080, South Korea (D.H.L., J.M.L.); Korea University Guro
Hospital, Korea University Medicine, Seoul, South Korea (C.H.L.); and
Tübingen University Hospital, Tübingen, Germany (S.A.,
A.O.)
| | - Saif Afat
- From the Departments of Radiology of Seoul National University
Hospital, Seoul, South Korea (D.H.L., J.M.L.); Seoul National University
Hospital, Seoul National University College of Medicine, 101 Daehak-ro,
Jongno-gu, Seoul 03080, South Korea (D.H.L., J.M.L.); Korea University Guro
Hospital, Korea University Medicine, Seoul, South Korea (C.H.L.); and
Tübingen University Hospital, Tübingen, Germany (S.A.,
A.O.)
| | - Ahmed Othman
- From the Departments of Radiology of Seoul National University
Hospital, Seoul, South Korea (D.H.L., J.M.L.); Seoul National University
Hospital, Seoul National University College of Medicine, 101 Daehak-ro,
Jongno-gu, Seoul 03080, South Korea (D.H.L., J.M.L.); Korea University Guro
Hospital, Korea University Medicine, Seoul, South Korea (C.H.L.); and
Tübingen University Hospital, Tübingen, Germany (S.A.,
A.O.)
| |
Collapse
|
8
|
Wang H, Yue S, Liu N, Chen Y, Zhan P, Liu X, Shang B, Wang L, Li Z, Gao J, Lyu P. Deep learning reconstruction vs standard reconstruction for abdominal CT: the influence of BMI. Eur Radiol 2024; 34:1614-1623. [PMID: 37650972 DOI: 10.1007/s00330-023-10179-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE This study aimed to evaluate the image quality and lesion conspicuity of the deep learning image reconstruction (DLIR) algorithm compared with standard image reconstruction algorithms on abdominal enhanced computed tomography (CT) scanning with a wide range of body mass indexes (BMIs). METHODS A total of 112 participants who underwent contrast-enhanced abdominal CT scans were divided into three groups according to BMIs: the 80-kVp group (BMI ≤ 23.9 kg/m2), 100-kVp group (BMI 24-28.9 kg/m2), and 120-kVp group (BMI ≥ 29 kg/m2). All images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction-V of 50% level (IR), and DLIR at low, medium, and high levels (DL, DM, and DH, respectively). Subjective noise, artifact, overall image quality, and low- and high-contrast hepatic lesion conspicuity were all graded on a 5-point scale. The CT attenuation value (in HU), image noise, and contrast-to-noise ratio (CNR) were quantified and compared. RESULTS DM and DH improved the qualitative and quantitative parameters compared with FBP and IR for all three BMI groups. DH had the lowest image noise and highest CNR value, while DM had the highest subjective overall image quality and low- and high-contrast lesion conspicuity scores for the three BMI groups. Based on the FBP, the improvement in image quality and lesion conspicuity of DM and DH images was greater in the 80-kVp group than in the 100-kVp and 120-kVp groups. CONCLUSION For all BMIs, DLIR improves both image quality and hepatic lesion conspicuity, of which DM would be the best choice to balance both. CLINICAL RELEVANCE STATEMENT The study suggests that utilizing DLIR, particularly at the medium level, can significantly enhance image quality and lesion visibility on abdominal CT scans across a wide range of BMIs. KEY POINTS • DLIR improved the image quality and lesion conspicuity across a wide range of BMIs. • DLIR at medium level had the highest subjective parameters and lesion conspicuity scores among all reconstruction levels. • On the basis of the FBP, the 80-kVp group had improved image quality and lesion conspicuity more than the 100-kVp and 120-kVp groups.
Collapse
Affiliation(s)
- Huixia Wang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Songwei Yue
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Nana Liu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Yan Chen
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Pengchao Zhan
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Xing Liu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Bo Shang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, 100176, China
| | - Zhen Li
- The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Jianbo Gao
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China.
| | - Peijie Lyu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
9
|
Li J, Zhu J, Zou Y, Zhang G, Zhu P, Wang N, Xie P. Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation. Eur J Radiol 2024; 171:111301. [PMID: 38237522 DOI: 10.1016/j.ejrad.2024.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVES To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). METHODS This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. RESULTS The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). CONCLUSIONS Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
Collapse
Affiliation(s)
- Jiao Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Junying Zhu
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Yixuan Zou
- United Imaging Healthcare, Shanghai 201800, China.
| | - Guozhi Zhang
- United Imaging Healthcare, Shanghai 201800, China.
| | - Pan Zhu
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Ning Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Peiyi Xie
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
10
|
Li S, Yuan L, Lu T, Yang X, Ren W, Wang L, Zhao J, Deng J, Liu X, Xue C, Sun Q, Zhang W, Zhou J. Deep learning imaging reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early detection of colorectal cancer liver metastases. Eur J Radiol 2023; 168:111128. [PMID: 37816301 DOI: 10.1016/j.ejrad.2023.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To explore whether reduced-dose (RD) gemstone spectral imaging (GSI) and deep learning image reconstruction (DLIR) of 40 keV virtual monoenergetic image (VMI) enhanced the early detection and diagnosis of colorectal cancer liver metastases (CRLM). METHODS Thirty-five participants with pathologically confirmed colorectal cancer were prospectively enrolled from March to August 2022 after routine care abdominal computed tomography (CT). GSI mode was used for contrast-enhanced CT, and two portal venous phase CT images were obtained [standard-dose (SD) CT dose index (CTDIvol) = 15.51 mGy, RD CTDIvol = 7.95 mGy]. The 40 keV-VMI were reconstructed via filtered back projection (FBP) and iterative reconstruction (ASIR-V 60 %, AV60) of both SD and RD images. RD medium-strength deep learning image reconstruction (DLIR-M) and RD high-strength deep learning image reconstruction (DLIR-H) were used to reconstruct the 40 keV-VMI. The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the liver and the lesions were objectively evaluated. The overall image quality, lesion conspicuity, and diagnostic confidence were subjectively evaluated, to compare the differences in evaluation results among the different images. RESULTS All 35 participants (mean age: 59.51 ± 11.01 years; 14 females) underwent SD and RD GSI portal venous-phase CT scans. The dose-length product of the RD GSI scan was reduced by 49-53 % lower than that of the SD GSI scan (420.22 ± 31.95) vs (817.58 ± 60.56). A total of 219 lesions were identified, including 55 benign lesions and 164 metastases, with an average size of 7.37 ± 4.14 mm. SD-FBP detected 207 lesions, SD-AV60 detected 201 lesions, and DLIR-M and DLIR-H detected 199 and 190 lesions, respectively. For lesions ≤ 5 mm, there was no statistical difference between SD-FBP vs DLIR-M (χ2McNemar = 1.00, P = 0.32) and SD-AV60 vs DLIR-M (χ2McNemar = 0.33, P = 0.56) in the detection rate. The CNR, SNR, and noise of DLIR-M and DLIR-H 40 keV-VMI images were better than those of SD-FBP images (P < 0.01) but did not differ significantly from those of SD-AV60 images (P > 0.05). When the lesions ≤ 5 mm, there were statistical differences in the overall diagnostic sensitivity of lesions compared with SD-FBP, SD-AV60, DLIR-M and DLIR-H (P<0.01). There were no statistical differences in the sensitivity of lesions diagnosis between SD-FBP, SD-AV60 and DLIR-M (both P>0.05). However, the DLIR-M subjective image quality and lesion diagnostic confidence were higher for SD-FBP (both P < 0.01). CONCLUSION Reduced dose DLIR-M of 40 keV-VMI can be used for routine follow-up care of colorectal cancer patients, to optimize evaluations and ensure CT image quality. Meanwhile, the detection rate and diagnostic sensitivity and specificity of small lesions, early liver metastases is not obviously reduced.
Collapse
Affiliation(s)
- Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Long Yuan
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Ting Lu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Xinmei Yang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Wei Ren
- CT Imaging Research Center, GE Healthcare China, Beijing, 100176, China.
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, 100176, China.
| | - Jun Zhao
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Qiu Sun
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China.
| | - Wenjuan Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
11
|
Nakamoto A, Onishi H, Tsuboyama T, Fukui H, Ota T, Ogawa K, Yano K, Kiso K, Honda T, Tatsumi M, Tomiyama N. Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning-Based Reconstruction Algorithm. J Comput Assist Tomogr 2023; 47:698-703. [PMID: 37707398 DOI: 10.1097/rct.0000000000001485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
OBJECTIVE To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning-based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. METHODS Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. RESULTS Deep learning-based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning-based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). CONCLUSIONS Deep learning-based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.
Collapse
Affiliation(s)
- Atsushi Nakamoto
- From the Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lell M, Kachelrieß M. Computed Tomography 2.0: New Detector Technology, AI, and Other Developments. Invest Radiol 2023; 58:587-601. [PMID: 37378467 PMCID: PMC10332658 DOI: 10.1097/rli.0000000000000995] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Indexed: 06/29/2023]
Abstract
ABSTRACT Computed tomography (CT) dramatically improved the capabilities of diagnostic and interventional radiology. Starting in the early 1970s, this imaging modality is still evolving, although tremendous improvements in scan speed, volume coverage, spatial and soft tissue resolution, as well as dose reduction have been achieved. Tube current modulation, automated exposure control, anatomy-based tube voltage (kV) selection, advanced x-ray beam filtration, and iterative image reconstruction techniques improved image quality and decreased radiation exposure. Cardiac imaging triggered the demand for high temporal resolution, volume acquisition, and high pitch modes with electrocardiogram synchronization. Plaque imaging in cardiac CT as well as lung and bone imaging demand for high spatial resolution. Today, we see a transition of photon-counting detectors from experimental and research prototype setups into commercially available systems integrated in patient care. Moreover, with respect to CT technology and CT image formation, artificial intelligence is increasingly used in patient positioning, protocol adjustment, and image reconstruction, but also in image preprocessing or postprocessing. The aim of this article is to give an overview of the technical specifications of up-to-date available whole-body and dedicated CT systems, as well as hardware and software innovations for CT systems in the near future.
Collapse
|
13
|
Shehata MA, Saad AM, Kamel S, Stanietzky N, Roman-Colon AM, Morani AC, Elsayes KM, Jensen CT. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol (NY) 2023; 48:2724-2756. [PMID: 37280374 PMCID: PMC11781595 DOI: 10.1007/s00261-023-03966-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To perform a systematic literature review and meta-analysis of the two most common commercially available deep-learning algorithms for CT. METHODS We used PubMed, Scopus, Embase, and Web of Science to conduct systematic searches for studies assessing the most common commercially available deep-learning CT reconstruction algorithms: True Fidelity (TF) and Advanced intelligent Clear-IQ Engine (AiCE) in the abdomen of human participants since only these two algorithms currently have adequate published data for robust systematic analysis. RESULTS Forty-four articles fulfilled inclusion criteria. 32 studies evaluated TF and 12 studies assessed AiCE. DLR algorithms produced images with significantly less noise (22-57.3% less than IR) but preserved a desirable noise texture with increased contrast-to-noise ratios and improved lesion detectability on conventional CT. These improvements with DLR were similarly noted in dual-energy CT which was only assessed for a single vendor. Reported radiation reduction potential was 35.1-78.5%. Nine studies assessed observer performance with the two dedicated liver lesion studies being performed on the same vendor reconstruction (TF). These two studies indicate preserved low contrast liver lesion detection (> 5 mm) at CTDIvol 6.8 mGy (BMI 23.5 kg/m2) to 12.2 mGy (BMI 29 kg/m2). If smaller lesion detection and improved lesion characterization is needed, a CTDIvol of 13.6-34.9 mGy is needed in a normal weight to obese population. Mild signal loss and blurring have been reported at high DLR reconstruction strengths. CONCLUSION Deep learning reconstructions significantly improve image quality in CT of the abdomen. Assessment of other dose levels and clinical indications is needed. Careful choice of radiation dose levels is necessary, particularly for small liver lesion assessment.
Collapse
Affiliation(s)
- Mostafa A Shehata
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Nir Stanietzky
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Ajaykumar C Morani
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Corey T Jensen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA.
| |
Collapse
|
14
|
Zhong J, Shen H, Chen Y, Xia Y, Shi X, Lu W, Li J, Xing Y, Hu Y, Ge X, Ding D, Jiang Z, Yao W. Evaluation of Image Quality and Detectability of Deep Learning Image Reconstruction (DLIR) Algorithm in Single- and Dual-energy CT. J Digit Imaging 2023; 36:1390-1407. [PMID: 37071291 PMCID: PMC10406981 DOI: 10.1007/s10278-023-00806-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
This study is aimed to evaluate effects of deep learning image reconstruction (DLIR) on image quality in single-energy CT (SECT) and dual-energy CT (DECT), in reference to adaptive statistical iterative reconstruction-V (ASIR-V). The Gammex 464 phantom was scanned in SECT and DECT modes at three dose levels (5, 10, and 20 mGy). Raw data were reconstructed using six algorithms: filtered back-projection (FBP), ASIR-V at 40% (AV-40) and 100% (AV-100) strength, and DLIR at low (DLIR-L), medium (DLIR-M), and high strength (DLIR-H), to generate SECT 120kVp images and DECT 120kVp-like images. Objective image quality metrics were computed, including noise power spectrum (NPS), task transfer function (TTF), and detectability index (d'). Subjective image quality evaluation, including image noise, texture, sharpness, overall quality, and low- and high-contrast detectability, was performed by six readers. DLIR-H reduced overall noise magnitudes from FBP by 55.2% in a more balanced way of low and high frequency ranges comparing to AV-40, and improved the TTF values at 50% for acrylic inserts by average percentages of 18.32%. Comparing to SECT 20 mGy AV-40 images, the DECT 10 mGy DLIR-H images showed 20.90% and 7.75% improvement in d' for the small-object high-contrast and large-object low-contrast tasks, respectively. Subjective evaluation showed higher image quality and better detectability. At 50% of the radiation dose level, DECT with DLIR-H yields a gain in objective detectability index compared to full-dose AV-40 SECT images used in daily practice.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028 China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203 China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176 China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| | - Zhenming Jiang
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Changning District, No. 1111 Xianxia Road, Shanghai, 200336 China
| |
Collapse
|
15
|
Zhou Z, Inoue A, McCollough CH, Yu L. Self-trained deep convolutional neural network for noise reduction in CT. J Med Imaging (Bellingham) 2023; 10:044008. [PMID: 37636895 PMCID: PMC10449263 DOI: 10.1117/1.jmi.10.4.044008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Supervised deep convolutional neural network (CNN)-based methods have been actively used in clinical CT to reduce image noise. The networks of these methods are typically trained using paired high- and low-quality data from a massive number of patients and/or phantom images. This training process is tedious, and the network trained under a given condition may not be generalizable to patient images acquired and reconstructed under different conditions. We propose a self-trained deep CNN (ST_CNN) method for noise reduction in CT that does not rely on pre-existing training datasets. Approach The ST_CNN training was accomplished using extensive data augmentation in the projection domain, and the inference was applied to the data itself. Specifically, multiple independent noise insertions were applied to the original patient projection data to generate multiple realizations of low-quality projection data. Then, rotation augmentation was adopted for both the original and low-quality projection data by applying the rotation angle directly on the projection data so that images were rotated at arbitrary angles without introducing additional bias. A large number of paired low- and high-quality images from the same patient were reconstructed and paired for training the ST_CNN model. Results No significant difference was found between the ST_CNN and conventional CNN models in terms of the peak signal-to-noise ratio and structural similarity index measure. The ST_CNN model outperformed the conventional CNN model in terms of noise texture and homogeneity in liver parenchyma as well as better subjective visualization of liver lesions. The ST_CNN may sacrifice the sharpness of vessels slightly compared to the conventional CNN model but without affecting the visibility of peripheral vessels or diagnosis of vascular pathology. Conclusions The proposed ST_CNN method trained from the data itself may achieve similar image quality in comparison with conventional deep CNN denoising methods pre-trained on external datasets.
Collapse
Affiliation(s)
- Zhongxing Zhou
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Akitoshi Inoue
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Lifeng Yu
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
16
|
Yang K, Cao J, Pisuchpen N, Kambadakone A, Gupta R, Marschall T, Li X, Liu B. CT image quality evaluation in the age of deep learning: trade-off between functionality and fidelity. Eur Radiol 2023; 33:2439-2449. [PMID: 36350391 DOI: 10.1007/s00330-022-09233-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To quantitatively compare DLIR and ASiR-V with realistic anatomical images. METHODS CT scans of an anthropomorphic phantom were acquired using three routine protocols (brain, chest, and abdomen) at four dose levels, with images reconstructed at five levels of ASiR-V and three levels of DLIR. Noise power spectrum (NPS) was estimated using a difference image by subtracting two matching images from repeated scans. Using the max-dose FBP reconstruction as the ground truth, the structure similarity index (SSIM) and gradient magnitude (GM) of difference images were evaluated. Image noise magnitude (σ), frequency location of the NPS peak (fpeak), mean SSIM (MSSIM), and mean GM (MGM) were used as quantitative metrics to compare image quality, for each anatomical region, protocol, algorithm, dose level, and slice thickness. RESULTS Image noise had a strong (R2 > 0.99) power law relationship with dose for all algorithms. For the abdomen and chest, fpeak shifted from 0.3 (FBP) down to 0.15 mm-1 (ASiR-V 100%) with increasing ASiR-V strength but remained 0.3 mm-1 for all DLIR levels. fpeak shifted down for the brain protocol with increasing DLIR levels. Three levels of DLIR produced similar image noise levels as ASiR-V 40%, 80%, and 100%, respectively. DLIR had lower MSSIM but higher MGM than ASiR-V while matching imaging noise. CONCLUSION Compared to ASiR-V, DLIR presents trade-offs between functionality and fidelity: it has a noise texture closer to FBP and more edge enhancement, but reduced structure similarity. These trade-offs and unique protocol-dependent behaviors of DLIR should be considered during clinical implementation and deployment. KEY POINTS • DLIR reconstructed images demonstrate closer noise texture and lower structure similarity to FBP while producing equivalent noise levels comparable to ASiR-V. • DLIR has additional edge enhancement as compared to ASiR-V. • DLIR has unique protocol-dependent behaviors that should be considered for clinical implementation.
Collapse
Affiliation(s)
- Kai Yang
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, WAC 240, Boston, MA, 02114, USA
| | - Nisanard Pisuchpen
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, WAC 240, Boston, MA, 02114, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, WAC 240, Boston, MA, 02114, USA
| | - Rajiv Gupta
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, WAC 240, Boston, MA, 02114, USA
| | - Theodore Marschall
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xinhua Li
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Bob Liu
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
17
|
Lyu P, Liu N, Harrawood B, Solomon J, Wang H, Chen Y, Rigiroli F, Ding Y, Schwartz FR, Jiang H, Lowry C, Wang L, Samei E, Gao J, Marin D. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely? Eur Radiol 2023; 33:1629-1640. [PMID: 36323984 DOI: 10.1007/s00330-022-09206-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To compare the image quality and hepatic metastasis detection of low-dose deep learning image reconstruction (DLIR) with full-dose filtered back projection (FBP)/iterative reconstruction (IR). METHODS A contrast-detail phantom consisting of low-contrast objects was scanned at five CT dose index levels (10, 6, 3, 2, and 1 mGy). A total of 154 participants with 305 hepatic lesions who underwent abdominal CT were enrolled in a prospective non-inferiority trial with a three-arm design based on phantom results. Data sets with full dosage (13.6 mGy) and low dosages (9.5, 6.8, or 4.1 mGy) were acquired from two consecutive portal venous acquisitions, respectively. All images were reconstructed with FBP (reference), IR (control), and DLIR (test). Eleven readers evaluated phantom data sets for object detectability using a two-alternative forced-choice approach. Non-inferiority analyses were performed to interpret the differences in image quality and metastasis detection of low-dose DLIR relative to full-dose FBP/IR. RESULTS The phantom experiment showed the dose reduction potential from DLIR was up to 57% based on the reference FBP dose index. Radiation decreases of 30% and 50% resulted in non-inferior image quality and hepatic metastasis detection with DLIR compared to full-dose FBP/IR. Radiation reduction of 70% by DLIR performed inferiorly in detecting small metastases (< 1 cm) compared to full-dose FBP (difference: -0.112; 95% confidence interval [CI]: -0.178 to 0.047) and full-dose IR (difference: -0.123; 95% CI: -0.182 to 0.053) (p < 0.001). CONCLUSION DLIR enables a 50% dose reduction for detecting low-contrast hepatic metastases while maintaining comparable image quality to full-dose FBP and IR. KEY POINTS • Non-inferiority study showed that deep learning image reconstruction (DLIR) can reduce the dose to oncological patients with low-contrast lesions without compromising the diagnostic information. • Radiation dose levels for DLIR can be reduced to 50% of full-dose FBP and IR for detecting low-contrast hepatic metastases, while maintaining comparable image quality. • The reduction of radiation by 70% by DLIR is clinically acceptable but insufficient for detecting small low-contrast hepatic metastases (< 1 cm).
Collapse
Affiliation(s)
- Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China.,Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Brian Harrawood
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Justin Solomon
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China
| | - Francesca Rigiroli
- Beth Israel Deaconess Medical Center Department of Radiology, Harvard Medical School, 1 Deaconess Rd, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Yuqin Ding
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA.,Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 20032, China
| | - Fides Regina Schwartz
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA
| | - Hanyu Jiang
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA.,Department of Radiology, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Carolyn Lowry
- Clinical Imaging Physics Group, Duke University Health System, 2424 Erwin Rd, Ste. 302, Durham, NC, 27705, USA
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, No.1 Tongji South Road, Beijing, 100176, China
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan Province, China.
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC, 27710, USA
| |
Collapse
|
18
|
Zhong J, Xia Y, Chen Y, Li J, Lu W, Shi X, Feng J, Yan F, Yao W, Zhang H. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Eur Radiol 2023; 33:812-824. [PMID: 36197579 DOI: 10.1007/s00330-022-09119-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 08/17/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To compare image quality between a deep learning image reconstruction (DLIR) algorithm and conventional iterative reconstruction (IR) algorithms in dual-energy CT (DECT) and to assess the impact of these algorithms on radiomics robustness. METHODS A phantom with clinical-relevant densities was imaged on seven DECT scanners with the same voxel size using typical abdominal-pelvis examination protocols. On one DECT scanner, raw data were reconstructed using both conventional IR (adaptive statistical iterative reconstruction-V, ASIR-V) and DLIR. Nine sets of corresponding images were generated on other six DECT scanners using scanner-equipped conventional IR. Regions of interest were delineated through rigid registrations. Image quality was compared. Pyradiomics platform was used for radiomics feature extraction. Test-retest repeatability was assessed by Bland-Altman analysis for repeated scans. Inter-reconstruction algorithm reproducibility between conventional IR and DLIR was tested by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-scanner reproducibility was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Robust features were identified. RESULTS DLIR significantly improved image quality. Ninety-four radiomics features were extracted and nine features were considered as robust. 93.87% features were repeatable between repeated scans. ASIR-V images showed higher reproducibility to other conventional IR than DLIR (ICC mean, 0.603 vs 0.558, p = 0.001; CCC mean, 0.554 vs 0.510, p = 0.004). 7.45% and 26.83% features were reproducible among scanners evaluated by CV and QCD, respectively. CONCLUSIONS DLIR improves quality of DECT images but may alter radiomics features compared to conventional IR. Nine robust DECT radiomics features were identified. KEY POINTS • DLIR improves DECT image quality in terms of signal-to-noise ratio and contrast-to-noise ratio compared with ASIR-V and showed the highest noise reduction rate and lowest peak frequency shift. • Most of radiomics features are repeatable between repeated DECT scans, while inter-reconstruction algorithm reproducibility between conventional IR and DLIR, and inter-scanner reproducibility, are low. • Although DLIR may alter radiomics features compared to IR algorithms, nine radiomics features survived repeatability and reproducibility analysis among DECT scanners and reconstruction algorithms, which allows further validation and clinical-relevant analysis.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Chen Y, Zhong J, Wang L, Shi X, Chang R, Fan J, Jiang J, Xia Y, Yan F, Yao W, Zhang H. Multivendor Comparison of Quantification Accuracy of Iodine Concentration and Attenuation Measurements by Dual-Energy CT: A Phantom Study. AJR Am J Roentgenol 2022; 219:827-839. [PMID: 35674353 DOI: 10.2214/ajr.22.27753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND. Studies comparing accuracy of quantification by dual-energy CT (DECT) scanners have been limited by small numbers of scanners evaluated and narrow ranges of scanning conditions. OBJECTIVE. The purpose of this study was to compare DECT scanners of varying vendors, technologies, and generations in terms of the accuracy of iodine concentration and attenuation measurements. METHODS. A DECT quality-control phantom was designed to contain seven inserts of varying iodine concentrations as well as soft-tissue and fat inserts. The phantom underwent DECT using 12 different scanner configurations based on seven different DECT scanners from three vendors, with additional variation in tube voltage settings. Technologies included rapid-switching, dual-source, and dual-layer detector DECT. Scans also used three radiation dose levels (10, 20, and 30 mGy) and multiple reconstruction algorithms (filtered back projection, medium and high iterative reconstruction, and deep learning image reconstruction [DLIR]). The mean absolute percentage error (MAPE, representing the absolute ratio of measured error to nominal values on average; lower values indicate better accuracy) was calculated for iodine concentration on iodine maps (MAPEiodine) and attenuation on virtual monochromatic images (VMIs) using 40, 70, 100, and 140 keV (MAPEHU). Linear mixed models were used to explore factors affecting quantification accuracy. RESULTS. MAPEiodine and MAPEHU ranged 4.62-28.55% and 10.21-26.33%, respectively, across scanner configurations. Accuracies of iodine concentration and attenuation measurements were higher for third-generation rapid-switching and dual-source scanners in comparison with respective earlier-generation scanners and the single evaluated dual-layer detector scanner. Among all configurations, the third-generation rapid-switching scanner using DLIR had the highest quantification accuracy for iodine concentration (MAPEiodine, 4.62% ± 3.87%) and attenuation (MAPEHU, 10.21% ± 11.43%). Overall, MAPEiodine was significantly affected by scanner configuration (F = 450.0, p < .001) and iodine concentration (F = 211.0, p < .001). Overall, MAPEHU was significantly affected by scanner configuration (F = 233.5, p < .001), radiation dose (F = 14.9, p < .001), VMI energy level (F = 1959.4, p < .001), and material density (F = 411.5, p < .001); radiation dose was significantly associated with MAPEHU for five of 12 individual configurations. CONCLUSION. Quantification accuracy varied among DECT configurations of varying vendors, platforms, and generations and was affected by acquisition and reconstruction parameters. DLIR may improve quantification accuracy. CLINICAL IMPACT. The interscanner differences in DECT-based measurements should be recognized when quantitative evaluation is performed by DECT in clinical practice.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, United Kingdom
| | - Rui Chang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Jing Fan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Jiang Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai 200025, China
| |
Collapse
|
20
|
Barat M, Marchese U, Pellat A, Dohan A, Coriat R, Hoeffel C, Fishman EK, Cassinotto C, Chu L, Soyer P. Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances. Can Assoc Radiol J 2022; 74:351-361. [PMID: 36065572 DOI: 10.1177/08465371221124927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Ugo Marchese
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Digestive, Hepatobiliary and Pancreatic Surgery, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Romain Coriat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | | | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, 27037University of Montpellier, Saint-Éloi Hospital, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| |
Collapse
|
21
|
Jensen CT, Gupta S, Saleh MM, Liu X, Wong VK, Salem U, Qiao W, Samei E, Wagner-Bartak NA. Reduced-Dose Deep Learning Reconstruction for Abdominal CT of Liver Metastases. Radiology 2022; 303:90-98. [PMID: 35014900 PMCID: PMC8962777 DOI: 10.1148/radiol.211838] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022]
Abstract
Background Assessment of liver lesions is constrained as CT radiation doses are lowered; evidence suggests deep learning reconstructions mitigate such effects. Purpose To evaluate liver metastases and image quality between reduced-dose deep learning image reconstruction (DLIR) and standard-dose filtered back projection (FBP) contrast-enhanced abdominal CT. Materials and Methods In this prospective Health Insurance Portability and Accountability Act-compliant study (September 2019 through April 2021), participants with biopsy-proven colorectal cancer and liver metastases at baseline CT underwent standard-dose and reduced-dose portal venous abdominal CT in the same breath hold. Three radiologists detected and characterized lesions at standard-dose FBP and reduced-dose DLIR, reported confidence, and scored image quality. Contrast-to-noise ratios for liver metastases were recorded. Summary statistics were reported, and a generalized linear mixed model was used. Results Fifty-one participants (mean age ± standard deviation, 57 years ± 13; 31 men) were evaluated. The mean volume CT dose index was 65.1% lower with reduced-dose CT (12.2 mGy) than with standard-dose CT (34.9 mGy). A total of 161 lesions (127 metastases, 34 benign lesions) with a mean size of 0.7 cm ± 0.3 were identified. Subjective image quality of reduced-dose DLIR was superior to that of standard-dose FBP (P < .001). The mean contrast-to-noise ratio for liver metastases of reduced-dose DLIR (3.9 ± 1.7) was higher than that of standard-dose FBP (3.5 ± 1.4) (P < .001). Differences in detection were identified only for lesions 0.5 cm or smaller: 63 of 65 lesions detected with standard-dose FBP (96.9%; 95% CI: 89.3, 99.6) and 47 lesions with reduced-dose DLIR (72.3%; 95% CI: 59.8, 82.7). Lesion accuracy with standard-dose FBP and reduced-dose DLIR was 80.1% (95% CI: 73.1, 86.0; 129 of 161 lesions) and 67.1% (95% CI: 59.3, 74.3; 108 of 161 lesions), respectively (P = .01). Lower lesion confidence was reported with a reduced dose (P < .001). Conclusion Deep learning image reconstruction (DLIR) improved CT image quality at 65% radiation dose reduction while preserving detection of liver lesions larger than 0.5 cm. Reduced-dose DLIR demonstrated overall inferior characterization of liver lesions and reader confidence. Clinical trial registration no. NCT03151564 © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Corey T. Jensen
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Shiva Gupta
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Mohammed M. Saleh
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Xinming Liu
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Vincenzo K. Wong
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Usama Salem
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Wei Qiao
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Ehsan Samei
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Nicolaus A. Wagner-Bartak
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| |
Collapse
|
22
|
Vernuccio F, Messina C, Merz V, Cannella R, Midiri M. Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma: Role of the Radiologist and Oncologist in the Era of Precision Medicine. Diagnostics (Basel) 2021; 11:2166. [PMID: 34829513 PMCID: PMC8623921 DOI: 10.3390/diagnostics11112166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of pancreatic ductal adenocarcinoma are growing over time. The management of patients with pancreatic ductal adenocarcinoma involves a multidisciplinary team, ideally involving experts from surgery, diagnostic imaging, interventional endoscopy, medical oncology, radiation oncology, pathology, geriatric medicine, and palliative care. An adequate staging of pancreatic ductal adenocarcinoma and re-assessment of the tumor after neoadjuvant therapy allows the multidisciplinary team to choose the most appropriate treatment for the patient. This review article discusses advancement in the molecular basis of pancreatic ductal adenocarcinoma, diagnostic tools available for staging and tumor response assessment, and management of resectable or borderline resectable pancreatic cancer.
Collapse
Affiliation(s)
- Federica Vernuccio
- Radiology Unit, University Hospital "Paolo Giaccone", 90127 Palermo, Italy
| | - Carlo Messina
- Oncology Unit, A.R.N.A.S. Civico, 90127 Palermo, Italy
| | - Valeria Merz
- Department of Medical Oncology, Santa Chiara Hospital, 38122 Trento, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University Hospital of Palermo, Via del Vespro 129, 90127 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Massimo Midiri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University Hospital of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|