1
|
Yang A, Lin LB, Xu H, Chen XL, Zhou P. Combination of intravoxel incoherent motion histogram parameters and clinical characteristics for predicting response to neoadjuvant chemoradiation in patients with locally advanced rectal cancer. Abdom Radiol (NY) 2025; 50:1505-1515. [PMID: 39395044 DOI: 10.1007/s00261-024-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE To explore the value of histogram parameters derived from intravoxel incoherent motion (IVIM) for predicting response to neoadjuvant chemoradiation (nCRT) in patients with locally advanced rectal cancer (LARC). METHODS A total of 112 patients diagnosed with LARC who underwent IVIM-DWI prior to nCRT were enrolled in this study. The true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and microvascular volume fraction (f) calculated from IVIM were recorded along with the histogram parameters. The patients were classified into the pathological complete response (pCR) group and the non-pCR group according to the tumor regression grade (TRG) system. Additionally, the patients were divided into low T stage (yp T0-2) and high T stage (ypT3-4) according to the pathologic T stage (ypT stage). Univariate logistic regression analysis was implemented to identify independent risk factors, including both clinical characteristics and IVIM histogram parameters. Subsequently, models for Clinical, Histogram, and Combined Clinical and Histogram were constructed using multivariable binary logistic regression analysis for the purpose of predicting pCR. The area under the receiver operating characteristic (ROC) curve (AUCs) was employed to evaluate the diagnostic performance of the three models. RESULTS The values of D_ kurtosis, f_mean, and f_ median were significantly higher in the pCR group compared with the non-pCR group (all P < 0.05). The value of D*_ entropy was significantly lower in the pCR group compared with the non-pCR group (P < 0.05). The values of D_ kurtosis, f_mean, and f_ median were significantly higher in the low T stage group compared with the high T stage group (all P < 0.05). The value of D*_ entropy was significantly lower in the low T stage group compared with the high T stage group (P < 0.05). The ROC curves indicated that the Combined Clinical and Histogram model exhibited the best diagnostic performance in predicting the pCR patients with AUCs, sensitivity, specificity, and accuracy of 0.916, 83.33%, 85.23%, and 84.82%. CONCLUSIONS The histogram parameters derived from IVIM have the potential to identify patients who have achieved pCR. Moreover, the combination of IVIM histogram parameters and clinical characteristics enhanced the diagnostic performance of IVIM histogram parameters.
Collapse
Affiliation(s)
- Ao Yang
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- , Chengdu, China
| | - Li-Bo Lin
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Xu
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Li Chen
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Peng Zhou
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Gong X, Ye Z, Shen Y, Song B. Enhancing the role of MRI in rectal cancer: advances from staging to prognosis prediction. Eur Radiol 2025:10.1007/s00330-025-11463-x. [PMID: 40045072 DOI: 10.1007/s00330-025-11463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Rectal cancer (RC) is one of the major health challenges worldwide. Accurate staging, restaging, invasiveness assessment, and treatment efficacy evaluation are crucial for its clinical management. Magnetic resonance imaging (MRI) plays a significant role in these processes. However, standard MRI techniques, including T2-weighted and diffusion-weighted imaging, have uncertainties in identifying early-stage tumors, high-risk nodules, extramural vascular invasion, and treatment efficacy, potentially leading to inappropriate treatment. Recent advances suggest that the integration of traditional MRI methods, including diffusion-weighted imaging, opposed-phase or contrast-enhanced T1-weighted imaging, as well as emerging synthetic MRI, could address these challenges. Additionally, improvements in imaging technology have spurred research into advanced functional MRI techniques such as diffusion kurtosis imaging and amide proton transfer weighted MRI, yielding promising results in RC assessment. Total neoadjuvant therapy has emerged as a new treatment paradigm for locally advanced RC, with neoadjuvant immunotherapy and chemotherapy offering viable alternatives to neoadjuvant chemoradiotherapy. However, the lack of standards for the early prediction of patient survival and tumor response to neoadjuvant therapy highlights a critical unmet need in matching therapies to suitable patients. Furthermore, organ preservation strategies after neoadjuvant therapy provide personalized options based on tumor response and patient preferences, yet traditional MRI assessments show significant variability. Radiomics and artificial intelligence hold promise for revealing complex patterns in MRI images associated with patient prognosis and treatment response. This review provides an overview of current MRI advancements in RC assessment and emphasizes how future research can refine tailored treatment strategies to improve patient outcomes. KEY POINTS: Question The accurate diagnosis of early-stage rectal tumors, high-risk nodules, treatment responses, and the early prediction of patient survival and therapeutic outcomes remain an unmet need. Findings Visual MRI has improved staging, restaging, and invasiveness evaluation. Advanced MRI, radiomics and artificial intelligence provide significant potential for tumor characterization and outcome prediction. Clinical relevance Advances in visual MRI are improving routine imaging protocols and radiomics and artificial intelligence show promise in enhancing treatment decisions through precise tumor characterization and outcome prediction.
Collapse
Affiliation(s)
- Xiaoling Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Shen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Radiology, Sanya People's Hospital, Sanya, China.
| |
Collapse
|
3
|
Zhang L, Jin Z, Yang F, Guo Y, Liu Y, Chen M, Xu S, Lin Z, Sun P, Yang M, Zhang P, Tao K, Zhang T, Li X, Zheng C. Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer. Eur Radiol 2025; 35:1669-1678. [PMID: 39297948 PMCID: PMC11835893 DOI: 10.1007/s00330-024-11081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVE To evaluate how intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) histogram analysis contribute to assessing complete response (CR) to neoadjuvant therapy (NAT) in locally advanced rectal cancer (LARC). MATERIAL AND METHODS In this prospective study, participants with LARC, who underwent NAT and subsequent surgery, with adequate MR image quality, were enrolled from November 2021 to March 2023. Conventional MRI (T2WI and DWI), IVIM, and DKI were performed before NAT (pre-NAT) and within two weeks before surgery (post-NAT). Image evaluation was independently performed by two experienced radiologists. Pathological complete response (pCR) was used as the reference standard. An IVIM-DKI-added model (a combination of IVIM and DKI histogram parameters with T2WI and DWI) was constructed. Receiver operating characteristic (ROC) curves were generated to evaluate the diagnostic performance of conventional MRI and the IVIM-DKI-added model. RESULTS A total of 59 participants (median age: 58.00 years [IQR: 52.00, 62.00]; 38 [64%] men) were evaluated, including 21 pCR and 38 non-pCR cases. The histogram parameters of DKI, including skewness of kurtosis post-NAT (post-KSkewness) and root mean squared of change ratio of diffusivity (Δ%DDKI-root mean squared), were entered into the IVIM-DKI-added model. The area under the ROC curve (AUC) of the IVIM-DKI-added model for assessing CR to NAT was significantly higher than that of conventional MRI (0.855 [95% CI: 0.749-0.960] vs 0.685 [95% CI: 0.565-0.806], p < 0.001). CONCLUSION IVIM and DKI provide added value in the evaluation of CR to NAT in LARC. KEY POINTS Question The current conventional imaging evaluation system lacks adequacy for assessing CR to NAT in LARC. Findings Significantly improved diagnostic performance was observed with the histogram analysis of IVIM and DKI in conjunction with conventional MRI. Clinical relevance IVIM and DKI provide significant value in evaluating CR to NAT in LARC, which bears significant implications for reducing surgical complications and facilitating organ preservation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Ziwei Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yiwan Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yuan Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Manman Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Si Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
| | - Peng Sun
- Clinical and Technical Support, Philips Healthcare, Beijing, 100600, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, 430022, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China.
| |
Collapse
|
4
|
Mesny E, Leporq B, Chapet O, Beuf O. Intravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directions. Magn Reson Imaging 2024; 108:129-137. [PMID: 38354843 DOI: 10.1016/j.mri.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Early prediction of radiation response by imaging is a dynamic field of research and it can be obtained using a variety of noninvasive magnetic resonance imaging methods. Recently, intravoxel incoherent motion (IVIM) has gained interest in cancer imaging. IVIM carries both diffusion and perfusion information, making it a promising tool to assess tumor response. Here, we briefly introduced the basics of IVIM, reviewed existing studies of IVIM in various type of tumors during radiotherapy in order to show whether IVIM is a useful technique for an early assessment of radiation response. 31/40 studies reported an increase of IVIM parameters during radiotherapy compared to baseline. In 27 studies, this increase was higher in patients with good response to radiotherapy. Future directions including implementation of IVIM on MR-Linac and its limitation are discussed. Obtaining new radiologic biomarkers of radiotherapy response could open the way for a more personalized, biology-guided radiation therapy.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France.
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| | - Olivier Chapet
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| |
Collapse
|
5
|
Wen L, Liu J, Hu P, Bi F, Liu S, Jian L, Zhu S, Nie S, Cao F, Lu Q, Yu X, Liu K. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Acad Radiol 2023; 30 Suppl 1:S176-S184. [PMID: 36739228 DOI: 10.1016/j.acra.2022.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023]
Abstract
RATIONALE AND OBJECTIVES The 15%-27% of patients with locally advanced rectal cancer (LARC) achieved pathologic complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) and could avoid proctectomy. We aimed to investigate the effectiveness of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for LARC patients treated with nCRT and to compare these radiomic models with radiologists' visual assessment. MATERIALS AND METHODS A total of 126 patients with LARC who received nCRT before surgery were included and randomly divided into a training set (n = 84) and a validation set (n = 42). 250 radiomic features were extracted from T2-weighted images from pre- and post-nCRT MRI. Pearson correlation analysis and AONVA or Relief were used to identify radiomic descriptors associated with pCR. Five machine-learning classifiers were compared to construct radiomic models. The radiomic nomogram was built via multivariate logistic regression analysis. Two senior radiologists independently rated tumor regression grades and compared with radiomic models. Area under the curve (AUC) of the models and pooled observers were compared by using the DeLong test. RESULTS The optimal pre-, post-, and delta-radiomic models yielded an AUC of 0.717 (95% CI: 0.639-0.795), 0.805 (95%CI: 0.736-0.874), and 0.724 (95%CI: 0.648-0.800), respectively. The radiomic nomogram based on pre-nCRT cN stage, pre-nCRT radscore, and post-nCRT radscore achieved an AUC of 0.852 (95%CI: 0.774-0.930), which was higher than the single radiomic models and pooled readers (all p < 0.05). CONCLUSIONS The radiomic nomogram is an effective and invasive tool to predict pCR in LARC patients after nCRT, which outperforms radiologists.
Collapse
Affiliation(s)
- Lu Wen
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Jun Liu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China.
| | - Pingsheng Hu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Feng Bi
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China.
| | - Siye Liu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Lian Jian
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Suyu Zhu
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Shaolin Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Fang Cao
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Ke Liu
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.
| |
Collapse
|
6
|
Su R, Wu S, Shen H, Chen Y, Zhu J, Zhang Y, Jia H, Li M, Chen W, He Y, Gao F. Combining Clinicopathology, IVIM-DWI and Texture Parameters for a Nomogram to Predict Treatment Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients. Front Oncol 2022; 12:886101. [PMID: 35712519 PMCID: PMC9197196 DOI: 10.3389/fonc.2022.886101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aimed to create a nomogram for the risk prediction of neoadjuvant chemoradiotherapy (nCRT) resistance in locally advanced rectal cancer (LARC). Methods Clinical data in this retrospective study were collected from a total of 135 LARC patients admitted to our hospital from June 2016 to December 2020. After screening by inclusion and exclusion criteria, 62 patients were included in the study. Texture analysis (TA) was performed on T2WI and DWI images. Patients were divided into response group (CR+PR) and no-response group (SD+PD) according to efficacy assessment. Multivariate analysis was performed on clinicopathology, IVIM-DWI and texture parameters for screening of independent predictors. A nomogram was created and model fit and clinical net benefit were assessed. Results Multivariate analysis of clinicopathology parameters showed that the differentiation and T stage were independent predictors (OR values were 14.516 and 11.589, resp.; P<0.05). Multivariate analysis of IVIM-DWI and texture parameters showed that f value and Rads-score were independent predictors (OR values were 0.855, 2.790, resp.; P<0.05). In this study, clinicopathology together with IVIM-DWI and texture parameters showed the best predictive efficacy (AUC=0.979). The nomogram showed good predictive performance and stability in identifying high-risk LARC patients who are resistant to nCRT (C-index=0.979). Decision curve analyses showed that the nomogram had the best clinical net benefit. Ten-fold cross-validation results showed that the average AUC value was 0.967, and the average C-index was 0.966. Conclusions The nomogram combining the differentiation, T stage, f value and Rads-score can effectively estimate the risk of nCRT resistance in patients with LARC.
Collapse
Affiliation(s)
- Rixin Su
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Shusheng Wu
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Hao Shen
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yaolin Chen
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jingya Zhu
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yu Zhang
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Haodong Jia
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Mengge Li
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Wenju Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Yifu He
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Fei Gao
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| |
Collapse
|