1
|
Yu H, Wang Z, Wu H, Zhu Z, Wang J, Fang R, Wu S, Xie H, Huang X, Benitez Mendieta J, Anbananthan H, Li Z. In-vivo left atrial surface motion and strain measurement using novel mesh regularized image block matching method with 4D-CTA. J Biomech 2024; 176:112354. [PMID: 39383691 DOI: 10.1016/j.jbiomech.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Atrial strain and motion play important roles in evaluation of stroke risks for patients with atrial fibrillation. While cardiac computed tomographic angiography (CTA) provides detailed left atrial morphology with unparallel image resolution, finding a suitable strain measurement method for CTA remains a considerable challenge. In this paper, for the first time, we introduced a mesh regularized image block matching method to estimate 3D left atrial (LA) surface strain with 4D CTA. A series of performance tests with ex-vivo phantom and in-vivo 4D-CTA data were deployed. In conclusion, our proposed method could provide reliable LA motion and strain data within limited time.
Collapse
Affiliation(s)
- Han Yu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Zidun Wang
- First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Hao Wu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Zhengduo Zhu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; School of Engineering, London South Bank University, London SE1 0AA, UK.
| | - Runxing Fang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Shanglin Wu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Hujin Xie
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Xianjue Huang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Haveena Anbananthan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Sports Science, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Ahn Y, Koo HJ, Lee SA, Jung D, Kang JW, Yang DH. Reference ranges of computed tomography-derived strains in four cardiac chambers. PLoS One 2024; 19:e0303986. [PMID: 38843302 PMCID: PMC11156317 DOI: 10.1371/journal.pone.0303986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
Research on cardiovascular diseases using CT-derived strain is gaining momentum, yet there is a paucity of information regarding reference standard values beyond echocardiography, particularly in cardiac chambers other than the left ventricle (LV). We aimed to compile CT-derived strain values from the four cardiac chambers in healthy adults and assess the impact of age and sex on myocardial strains. This study included 101 (mean age: 55.2 ± 9.0 years, 55.4% men) consecutive healthy individuals who underwent multiphase cardiac CT. CT-derived cardiac strains, including LV global and segmental longitudinal, circumferential, and transverse strains, left atrial (LA), right atrial (RA), and right ventricle (RV) strains were measured by the commercially available software. Strain values were classified and compared by their age and sex. The normal range of CT-derived LV global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were -20.2 ± 2.7%, -27.9 ± 4.1%, and 49.4 ± 12.1%, respectively. For LA, reservoir strain, pump strain, and conduit strain were 28.6 ± 8.5%, 13.2 ± 6.4%, and 15.5 ± 8.6%, respectively. The GLS of RA and RV were 27.9 ± 10.9% and -22.0 ± 5.7%, respectively. The absolute values of GLS of RA and RV of women were higher than that in men (32.4 ± 11.4 vs. 24.3 ± 9.1 and -25.2 ± 4.7 vs. -19.4 ± 5.0, respectively; p<0.001, both). Measurement of CT-derived strain in four cardiac chambers is feasible. The reference ranges of CT strains in four cardiac chambers can be used for future studies of various cardiac diseases using the cardiac strains.
Collapse
Affiliation(s)
- Yura Ahn
- Department of Radiology and Research Institute of Radiology, Republic of Korea
| | - Hyun Jung Koo
- Department of Radiology and Research Institute of Radiology, Republic of Korea
| | - Seung Ah Lee
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - DaSol Jung
- Department of Radiology and Research Institute of Radiology, Republic of Korea
| | - Joon-Won Kang
- Department of Radiology and Research Institute of Radiology, Republic of Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, Republic of Korea
| |
Collapse
|
3
|
Influence of temporal resolution on computed tomography feature-tracking strain measurements. Eur J Radiol 2023; 158:110644. [PMID: 36525702 DOI: 10.1016/j.ejrad.2022.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Temporal resolution significantly affects strain values demonstrated by Magnetic resonance feature-tracking and speckle-tracking echocardiography. We investigated the influence of R-R interval reconstruction increments on left ventricular (LV) and left atrial (LA) strain measurements of Computed tomography feature-tracking (CT-FT). METHODS Subjects who underwent retrospective electrocardiogram-gated coronary CT angiography (CCTA) were retrospectively included, and CCTA images were reconstructed in 5% and 10% steps throughout the entire cardiac cycle (0-100% R-R interval). LV global longitudinal strain (GLS), circumferential strain (GCS), radial strain (GRS), LA GLS, ejection fraction (EF), and left atrioventricular coupling indices were computed. We evaluated the consistency and variability of continuous variables between the two reconstruction increment groups, the demarcation between the LA conduit and contraction phases, and observer reproducibility in 20 randomly selected participants. RESULTS Eighty-one participants with or without cardiac disease were included. The reconstruction increment of the R-R interval significantly affected the CT-FT-derived strain values. The 5% R-R increment resulted in significantly larger absolute strain values. LV GRS had the greatest difference between the two groups. In the subgroups with heart rates greater than 80 beats per minute or impaired cardiac function, group differences were attenuated, especially for LV GLS, LV GRS, and LA GLS. The prevalence of definite demarcation between the LA conduit and contraction phases was significantly higher in the 5% R-R reconstruction increment group than in the 10% R-R reconstruction increment group. The average heart rate during CCTA scanning was a strong risk factor for indefinite demarcation, which is independent of LVEF. As average heart rate increased, so did the incidence of indefinite demarcation between the LA conduit and contraction phases. The observer reproducibility of LV and LA strain values was independent of the R-R reconstruction increment. CONCLUSION Reconstruction increment of the R-R interval is an important source of variation in LV and LA CT-FT strain values, especially with low heart rate and preserved cardiac function. It is essential to control the heart rate and apply a narrow R-R reconstruction increment to quantify phasic LA strain.
Collapse
|
4
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022. [PMID: 35369885 DOI: 10.1186/s12968-022-00851-7/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Xiaoying Cai
- Siemens Healthineers, Boston, Massachusetts, USA
| | - Claire E Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Joshua Y Cheng
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022; 24:23. [PMID: 35369885 PMCID: PMC8978361 DOI: 10.1186/s12968-022-00851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A. Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Sona. Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | | | - Claire E. Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | | | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N. Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C. Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| |
Collapse
|