1
|
Leo E, Stanzione A, Miele M, Cuocolo R, Sica G, Scaglione M, Camera L, Maurea S, Mainenti PP. Artificial Intelligence and Radiomics for Endometrial Cancer MRI: Exploring the Whats, Whys and Hows. J Clin Med 2023; 13:226. [PMID: 38202233 PMCID: PMC10779496 DOI: 10.3390/jcm13010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Endometrial cancer (EC) is intricately linked to obesity and diabetes, which are widespread risk factors. Medical imaging, especially magnetic resonance imaging (MRI), plays a major role in EC assessment, particularly for disease staging. However, the diagnostic performance of MRI exhibits variability in the detection of clinically relevant prognostic factors (e.g., deep myometrial invasion and metastatic lymph nodes assessment). To address these challenges and enhance the value of MRI, radiomics and artificial intelligence (AI) algorithms emerge as promising tools with a potential to impact EC risk assessment, treatment planning, and prognosis prediction. These advanced post-processing techniques allow us to quantitatively analyse medical images, providing novel insights into cancer characteristics beyond conventional qualitative image evaluation. However, despite the growing interest and research efforts, the integration of radiomics and AI to EC management is still far from clinical practice and represents a possible perspective rather than an actual reality. This review focuses on the state of radiomics and AI in EC MRI, emphasizing risk stratification and prognostic factor prediction, aiming to illuminate potential advancements and address existing challenges in the field.
Collapse
Affiliation(s)
- Elisabetta Leo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mariaelena Miele
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Luigi Camera
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Council of Research (CNR), 80131 Naples, Italy
| |
Collapse
|
2
|
Stanzione A, Cuocolo R, Bombace C, Pesce I, Mainolfi CG, De Giorgi M, Delli Paoli G, La Selva P, Petrone J, Camera L, Klain M, Del Vecchio S, Cuocolo A, Maurea S. Prediction of 2-[ 18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study. Cancers (Basel) 2023; 15:3439. [PMID: 37444549 DOI: 10.3390/cancers15133439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Indeterminate adrenal masses (AM) pose a diagnostic challenge, and 2-[18F]FDG PET-CT serves as a problem-solving tool. Aim of this study was to investigate whether CT radiomics features could be used to predict the 2-[18F]FDG SUVmax of AM. METHODS Patients with AM on 2-[18F]FDG PET-CT scan were grouped based on iodine contrast injection as CT contrast-enhanced (CE) or CT unenhanced (NCE). Two-dimensional segmentations of AM were manually obtained by multiple operators on CT images. Image resampling and discretization (bin number = 16) were performed. 919 features were calculated using PyRadiomics. After scaling, unstable, redundant, and low variance features were discarded. Using linear regression and the Uniform Manifold Approximation and Projection technique, a CT radiomics synthetic value (RadSV) was obtained. The correlation between CT RadSV and 2-[18F]FDG SUVmax was assessed with Pearson test. RESULTS A total of 725 patients underwent PET-CT from April 2020 to April 2021. In 150 (21%) patients, a total of 179 AM (29 bilateral) were detected. Group CE consisted of 84 patients with 108 AM (size = 18.1 ± 4.9 mm) and Group NCE of 66 patients with 71 AM (size = 18.5 ± 3.8 mm). In both groups, 39 features were selected. No statisticallyf significant correlation between CT RadSV and 2-[18F]FDG SUVmax was found (Group CE, r = 0.18 and p = 0.058; Group NCE, r = 0.13 and p = 0.27). CONCLUSIONS It might not be feasible to predict 2-[18F]FDG SUVmax of AM using CT RadSV. Its role as a problem-solving tool for indeterminate AM remains fundamental.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy
| | - Claudia Bombace
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Ilaria Pesce
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Ciro Gabriele Mainolfi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Marco De Giorgi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Gregorio Delli Paoli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Pasquale La Selva
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Jessica Petrone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Camera
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|