1
|
Hiraiwa H, Nagai S, Ito R, Kondo K, Kazama S, Kondo T, Adachi S, Furusawa K, Tanaka A, Morimoto R, Okumura T, Murohara T. Ability of dynamic chest radiography to identify left ventricular systolic dysfunction in heart failure. Int J Cardiovasc Imaging 2025; 41:507-521. [PMID: 39862281 PMCID: PMC11880156 DOI: 10.1007/s10554-025-03332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Dynamic chest radiography (DCR) can estimate haemodynamic parameters in heart failure (HF). However, no studies have evaluated its ability to determine cardiac systolic function in HF. This experimental study investigates the correlation between left ventricular (LV) ejection fraction (LVEF) and DCR image parameters in HF. Ninety-one patients with acute HF (median age, 58 years; males, 75%) (cardiologist diagnosis using the Framingham criteria) underwent DCR and transthoracic echocardiography after treatment for the uncompensated phase of HF. The LV apex pixel value (PV) change was measured by DCR. Correlations between the PV change and LVEF, as well as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of DCR, were evaluated. LVEF and LV apex PV change were correlated in all patients (R = 0.428, P < 0.001) and in patients with LVEF < 50% (n = 38; R = 0.355, P = 0.029), < 40% (n = 31; R = 0.343, P = 0.059), and < 30% (n = 23; R = 0.321, P = 0.135). There was no significant correlation for patients with LVEF ≥ 50% (n = 53; R = - 0.004, P = 0.980). The LV apex PV change rate cutoff values for identifying LVEF < 50%, < 40%, and < 30% were 9.3% (AUC: 0.761, sensitivity: 0.698, specificity: 0.789, P < 0.001), 5.5% (AUC: 0.765, sensitivity: 0.883, specificity: 0.645, P < 0.001), and 5.5% (AUC: 0.767, sensitivity: 0.838, specificity: 0.696, P < 0.001), respectively. DCR may be useful to identify LV systolic dysfunction based on LVEF in acute HF.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Shin Nagai
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kiyota Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shiro Adachi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Hatabu H, Yanagawa M, Yamada Y, Hino T, Yamasaki Y, Hata A, Ueda D, Nakamura Y, Ozawa Y, Jinzaki M, Ohno Y. Recent trends in scientific research in chest radiology: What to do or not to do? That is the critical question in research. Jpn J Radiol 2025:10.1007/s11604-025-01735-3. [PMID: 39815124 DOI: 10.1007/s11604-025-01735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Hereby inviting young rising stars in chest radiology in Japan for contributing what they are working currently, we would like to show the potentials and directions of the near future research trends in the research field. I will provide a reflection on my own research topics. At the end, we also would like to discuss on how to choose the themes and topics of research: What to do or not to do? We strongly believe it will stimulate and help investigators in the field.
Collapse
Affiliation(s)
- Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| | - Masahiro Yanagawa
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuzo Yamasaki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Hata
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusei Nakamura
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
3
|
Takakura K, Yamasaki Y, Kuramoto T, Yoshidome S, Hida T, Kamitani T, Yoshikawa H, Kato T, Ishigami K. Refined scan protocol for the evaluation of pulmonary perfusion standardized image quality and reduced radiation dose in dynamic chest radiography. J Appl Clin Med Phys 2024; 25:e14222. [PMID: 38011586 PMCID: PMC10795455 DOI: 10.1002/acm2.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
PURPOSE Dynamic chest radiography (DCR) is a novel imaging technique used to noninvasively evaluate pulmonary perfusion. However, the standard DCR protocol, which is roughly adapted to the patient's body size, occasionally causes over- or underexposure, which could influence clinical evaluation. Therefore, we proposed a refined protocol by increasing the number of patient body mass index (BMI) categories from three to seven groups and verified its usefulness by comparing the image sensitivity indicators (S-values) and entrance surface doses (ESDs) of the conventional protocol with those of our refined protocol. METHODS This retrospective observational study included 388 datasets (standing position, 224; supine position, 164) for the conventional protocol (December 2019-April 2021) and 336 datasets (standing position, 233; supine position, 103) for the refined protocol (June-November 2021). The conventional protocol (BMI-3 protocol) divided the patients into three BMI groups (BMI < 17, 17≤BMI < 25, and BMI ≥ 25 kg/m2 ), whereas the refined protocol (BMI-7 protocol) divided the patients into seven BMI groups (BMI < 17, 17 ≤ BMI < 20, 20 ≤ BMI < 23, 23 ≤ BMI < 26, 26 ≤ BMI < 29, 29 ≤ BMI < 32, and BMI ≥ 32 kg/m2 ). The coefficients of variation (CVs) for the S-values and ESDs acquired using the two protocols were compared. RESULTS The CVs of the S-values in the BMI-7 protocol group were significantly lower than those in the BMI-3 protocol group for the standing (28.8% vs. 16.7%; p < 0.01) and supine (24.5% vs. 17.7%; p < 0.01) positions. The ESDs of patients scanned using the BMI-7 protocol were significantly lower than those scanned using the BMI-3 protocol in the standing (1.3 vs. 1.1 mGy; p < 0.01) and supine positions (2.5 vs. 1.6 mGy; p < 0.01), although the mean BMI of the two groups were similar. CONCLUSION We introduced the BMI-7 protocol and demonstrated its standardized image quality and reduced radiation exposure in patients undergoing DCR.
Collapse
Affiliation(s)
- Kenta Takakura
- Division of RadiologyDepartment of Medical TechnologyKyushu University HospitalFukuokaJapan
| | - Yuzo Yamasaki
- Department of Clinical RadiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Taku Kuramoto
- Department of Radiological TechnologyFaculty of Health SciencesKobe Tokiwa UniversityKobeJapan
| | - Satoshi Yoshidome
- Division of RadiologyDepartment of Medical TechnologyKyushu University HospitalFukuokaJapan
| | - Tomoyuki Hida
- Department of RadiologyOnga Nakama Medical Association Onga HospitalFukuokaJapan
| | - Takeshi Kamitani
- Department of Clinical RadiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hideki Yoshikawa
- Division of RadiologyDepartment of Medical TechnologyKyushu University HospitalFukuokaJapan
| | - Toyoyuki Kato
- Division of RadiologyDepartment of Medical TechnologyKyushu University HospitalFukuokaJapan
| | - Kousei Ishigami
- Department of Clinical RadiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
4
|
Okamoto H, Miyatake H, Kodama M, Matsubayashi J, Matsutani N, Fujino K, Tsujita Y, Shiomi N, Nakagawa Y. Discriminative Ability of Dynamic Chest Radiography to Identify Left Ventricular Dysfunction. Circ J 2023; 88:159-167. [PMID: 38030239 DOI: 10.1253/circj.cj-23-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Dynamic chest radiography (DCR) produces sequential radiographs within a short examination time. It is also inexpensive and only uses a low dose of radiation. Because of the lack of reports of evaluating cardiac function using DCR in humans, we investigated its discriminative ability for left ventricular (LV) dysfunction in a study cohort. METHODS AND RESULTS We analyzed the DCR pixel values of 4 circular regions of interest (ROIs) in the hearts of 61 patients with cardiovascular disease and 10 healthy volunteers. We evaluated the relationship between changes in pixel value in the heart and the LV ejection fraction (LVEF) by echocardiography. We constructed receiver operating characteristic (ROC) curves to evaluate whether the percent change in pixel value (%∆pixel value) could be used to identify patients with reduced LVEF. A total of 21 patients had reduced LVEF (LVEF <50%), and 40 had preserved LVEF (LVEF ≥50%). The correlation between LVEF and %∆pixel value in each ROI was significant, and the area under the ROC curve of the %∆pixel values for identifying patients with reduced LVEF was satisfactory (0.808-0.827) in 3 ROIs where the entire circular area was within the cardiac shadow. CONCLUSIONS LV dysfunction can be detected by changes in the pixel value on DCR.
Collapse
Affiliation(s)
- Hiroki Okamoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shiga University of Medical Science
| | - Hidemitsu Miyatake
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Misato Kodama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shiga University of Medical Science
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science
| | | | - Kazunori Fujino
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Yasuyuki Tsujita
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Naoto Shiomi
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Yoshihisa Nakagawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shiga University of Medical Science
| |
Collapse
|