1
|
Shen X, Yang F, Jiang T, Zheng Z, Chen Y, Tan C, Ke N, Qiu J, Liu X, Zhang H, Wang X. A nomogram to preoperatively predict the aggressiveness of non-functional pancreatic neuroendocrine tumors based on CT features. Eur J Radiol 2024; 171:111284. [PMID: 38232572 DOI: 10.1016/j.ejrad.2023.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVES To develop a nomogram to predict the aggressiveness of non-functional pancreatic neuroendocrine tumors (NF-pNETs) based on preoperative computed tomography (CT) features. METHODS This study included 176 patients undergoing radical resection for NF-pNETs. These patients were randomly divided into the training (n = 123) and validation sets (n = 53). A nomogram was developed based on preoperative predictors of aggressiveness of the NF-pNETs which were identified by univariable and multivariable logistic regression analysis. The aggressiveness of NF-pNETs was defined as a composite measure including G3 grading, N+, distant metastases, and/ or disease recurrence. RESULTS Altogether, the number of patients with highly aggressive NF-pNETs was 37 (30.08 %) and 15 (28.30 %) in the training and validation sets, respectively. Multivariable logistic regression analysis identified that tumor size, biliopancreatic duct dilatation, lymphadenopathy, and enhancement pattern were preoperative predictors of aggressiveness. Those variables were used to develop a nomogram with good concordance statistics of 0.89 and 0.86 for predicting aggressiveness in the training and validation sets, respectively. With a nomogram score of 59, patients with NF-pNETs were divided into low-aggressive and high-aggressive groups. The high-aggressive group had decreased overall survival (OS) and disease-free survival (DFS). Moreover, the nomogram showed good performance in predicting OS and DFS at 3, 5, and 10 years. CONCLUSION The nomogram integrating CT features helped preoperatively predict the aggressiveness of NF-pNETs and could potentially facilitate clinical decision-making.
Collapse
Affiliation(s)
- Xiaoding Shen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fan Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Taiyan Jiang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenjiang Zheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Nengwen Ke
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiajun Qiu
- Department of West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hao Zhang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xing Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Gu W, Chen Y, Zhu H, Chen H, Yang Z, Mo S, Zhao H, Chen L, Nakajima T, Yu X, Ji S, Gu Y, Chen J, Tang W. Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: a multicohort study. EClinicalMedicine 2023; 65:102269. [PMID: 38106556 PMCID: PMC10725026 DOI: 10.1016/j.eclinm.2023.102269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023] Open
Abstract
Background Lymph node status is an important factor for the patients with non-functional pancreatic neuroendocrine tumors (NF-PanNETs) with respect to the surgical methods, prognosis, recurrence. Our aim is to develop and validate a combination model based on contrast-enhanced CT images to predict the lymph node metastasis (LNM) in NF-PanNETs. Methods Retrospective data were gathered for 320 patients with NF-PanNETs who underwent curative pancreatic resection and CT imaging at two institutions (Center 1, n = 236 and Center 2, n = 84) between January 2010 and March 2022. RDPs (Radiomics deep learning signature) were developed based on ten machine-learning techniques. These signatures were integrated with the clinicopathological factors into a nomogram for clinical applications. The evaluation of the model's performance was conducted through the metrics of the area under the curve (AUC). Findings The RDPs showed excellent performance in both centers with a high AUC for predicting LNM and disease-free survival (DFS) in Center 1 (AUC, 0.88; 95% CI: 0.84-0.92; DFS, p < 0.05) and Center 2 (AUC, 0.91; 95% CI: 0.85-0.97; DFS, p < 0.05). The clinical factors of vascular invasion, perineural invasion, and tumor grade were associated with LNM (p < 0.05). The combination nomogram showed better prediction capability for LNM (AUC, 0.93; 95% CI: 0.89-0.96). Notably, our model maintained a satisfactory predictive ability for tumors at the 2-cm threshold, demonstrating its effectiveness across different tumor sizes in Center 1 (≤2 cm: AUC, 0.90 and >2 cm: AUC, 0.86) and Center 2 (≤2 cm: AUC, 0.93 and >2 cm: AUC, 0.91). Interpretation Our RDPs may have the potential to preoperatively predict LNM in NF-PanNETs, address the insufficiency of clinical guidelines concerning the 2-cm threshold for tumor lymph node dissection, and provide precise therapeutic strategies. Funding This work was supported by JSPS KAKENHI Grant Number JP22K20814; the Rare Tumor Research Special Project of the National Natural Science Foundation of China (82141104) and Clinical Research Special Project of Shanghai Municipal Health Commission (202340123).
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of Medicine, Ibaraki, Tsukuba, Japan
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yingli Chen
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haibin Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Haidi Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, China
| | - Lei Chen
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of Medicine, Ibaraki, Tsukuba, Japan
| | - XianJun Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - YaJia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Head & Neck Tumors and Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|