1
|
Grundberg O, Skribek M, Swerkersson S, Skorpil M, Kölbeck K, Grozman V, Nyren S, Tsakonas G. Diffusion weighted MRI and apparent diffusion coefficient as a prognostic biomarker in evaluating chemotherapy-antiangiogenic treated stage IV non-small cell lung cancer: A prospective, single-arm, open-label, clinical trial (BevMar). Eur J Radiol 2024; 177:111557. [PMID: 38954912 DOI: 10.1016/j.ejrad.2024.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE When treating Lung Cancer, it is necessary to identify early treatment failure to enable timely therapeutic adjustments. The Aim of this study was to investigate whether changes in tumor diffusion during treatment with chemotherapy and bevacizumab could serve as a predictor of treatment failure. MATERIAL AND METHODS A prospective single-arm, open-label, clinical trial was conducted between September 2014 and December 2020, enrolling patients with stage IV non-small cell lung cancer (NSCLC). The patients were treated with chemotherapy-antiangiogenic combination. Diffusion weighted magnetic resonance imaging (DW-MRI) was performed at baseline, two, four, and sixteen weeks after initiating treatment. The differences in apparent diffusion coefficient (ADC) values between pre- and post-treatment MRIs were recorded as Delta values (ΔADC). We assessed whether ΔADC could serve as a prognostic biomarker for overall survival (OS), with a five year follow up. RESULTS 18 patients were included in the final analysis. Patients with a ΔADC value ≥ -3 demonstrated a significantly longer OS with an HR of 0.12 (95 % CI; 0.03- 0.61; p = 0.003) The median OS in patients with a ΔADC value ≥ -3 was 18 months, (95 % C.I; 7-46) compared to 7 months (95 % C.I; 5-9) in those with a ΔADC value < -3. CONCLUSION Our findings suggest that early changes in tumor ADC values, may be indicative of a longer OS. Therefore, DW-MRI could serve as an early biomarker for assessing treatment response in patients receiving chemotherapy combined with antiangiogenic therapy.
Collapse
Affiliation(s)
- Oscar Grundberg
- Department of Thoracic Oncology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Marcus Skribek
- Department of Thoracic Oncology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Mikael Skorpil
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Karl Kölbeck
- Department of Thoracic Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Vitali Grozman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Thoracic Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Nyren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Thoracic Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Georgios Tsakonas
- Department of Thoracic Oncology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Guneyli S, Tor M, Hassoy H, Aygun MS, Altinmakas E, Dik Altintas S, Savas R. Spin-echo and diffusion-weighted MRI in differentiation between progressive massive fibrosis and lung cancer. ACTA ACUST UNITED AC 2021; 27:469-475. [PMID: 34313230 DOI: 10.5152/dir.2021.20344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE We aimed to investigate the value of magnetic resonance imaging (MRI)-based parameters in differentiating between progressive massive fibrosis (PMF) and lung cancer. METHODS This retrospective study included 60 male patients (mean age, 67.0±9.0 years) with a history of more than 10 years working in underground coal mines who underwent 1.5 T MRI of thorax due to a lung nodule/mass suspicious for lung cancer on computed tomography. Thirty patients had PMF, and the remaining ones had lung cancer diagnosed histopathologically. The sequences were as follows: coronal single-shot turbo spin echo (SSH-TSE), axial T1- and T2-weighted spin-echo (SE), balanced turbo field echo, T1-weighted high-resolution isotropic volume excitation, free-breathing and respiratory triggered diffusion-weighted imaging (DWI). The patients' demographics, lesion sizes, and MRI-derived parameters were compared between the patients with PMF and lung cancer. RESULTS Apparent diffusion coefficient (ADC) values of DWI and respiratory triggered DWI, signal intensities on T1-weighted SE, T2-weighted SE, and SSH-TSE imaging were found to be significantly different between the groups (p < 0.001, for all comparisons). Median ADC values of free-breathing DWI in patients with PMF and cancer were 1.25 (0.93-2.60) and 0.76 (0.53-1.00) (× 10-3 mm2/s), respectively. Most PMF lesions were predominantly iso- or hypointense on T1-weighted SE, T2-weighted SE, and SSH-TSE, while most malignant ones predominantly showed high signal intensity on these sequences. CONCLUSION MRI study including SE imaging, specially T1-weighted SE imaging and ADC values of DWI can help to distinguish PMF from lung cancer.
Collapse
Affiliation(s)
- Serkan Guneyli
- Department of Radiology, Koc University, Istanbul, Turkey
| | - Meltem Tor
- Department of Pulmonology, Bulent Ecevit University, Zonguldak, Turkey
| | - Hur Hassoy
- Department of Public Health, Ege University, Izmir, Turkey
| | | | | | | | - Recep Savas
- Department of Radiology, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Messina C, Bignone R, Bruno A, Bruno A, Bruno F, Calandri M, Caruso D, Coppolino P, De Robertis R, Gentili F, Grazzini I, Natella R, Scalise P, Barile A, Grassi R, Albano D, on behalf of the Young SIRM Working Group. Diffusion-Weighted Imaging in Oncology: An Update. Cancers (Basel) 2020; 12:1493. [PMID: 32521645 PMCID: PMC7352852 DOI: 10.3390/cancers12061493] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
To date, diffusion weighted imaging (DWI) is included in routine magnetic resonance imaging (MRI) protocols for several cancers. The real additive role of DWI lies in the "functional" information obtained by probing the free diffusivity of water molecules into intra and inter-cellular spaces that in tumors mainly depend on cellularity. Although DWI has not gained much space in some oncologic scenarios, this non-invasive tool is routinely used in clinical practice and still remains a hot research topic: it has been tested in almost all cancers to differentiate malignant from benign lesions, to distinguish different malignant histotypes or tumor grades, to predict and/or assess treatment responses, and to identify residual or recurrent tumors in follow-up examinations. In this review, we provide an up-to-date overview on the application of DWI in oncology.
Collapse
Affiliation(s)
- Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milano, Italy
| | - Rodolfo Bignone
- Radiology Unit, University of Palermo, 90127 Palermo, Italy; (R.B.); (A.B.)
| | - Alberto Bruno
- Radiology Unit, University of Palermo, 90127 Palermo, Italy; (R.B.); (A.B.)
| | - Antonio Bruno
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, S.Orsola-Malpighi Hospital, 40126 Bologna, Italy;
| | - Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Marco Calandri
- Radiology Unit, A.O.U. San Luigi Gonzaga di Orbassano, Department of Oncology, University of Torino, 10043 Turin, Italy;
| | - Damiano Caruso
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Sant’Andrea University Hospital, 00161 Rome, Italy;
| | - Pietro Coppolino
- Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”-Radiology I Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy;
| | - Riccardo De Robertis
- Department of Radiology, Ospedale Civile Maggiore, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Francesco Gentili
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, 52100 Arezzo, Italy;
| | - Raffaele Natella
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (R.N.); (R.G.)
| | - Paola Scalise
- Department of Diagnostic Imaging, Pisa University Hospital, 56124 Pisa, Italy;
| | - Antonio Barile
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Roberto Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (R.N.); (R.G.)
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Section of Radiological Sciences, University of Palermo, 90127 Palermo, Italy
| | | |
Collapse
|
4
|
Optimized Parameters of Diffusion-Weighted MRI for Prediction of the Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9392747. [PMID: 31737679 PMCID: PMC6815634 DOI: 10.1155/2019/9392747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Aim To identify the optimal diffusion-weighted MRI-derived parameters for predicting the response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Methods This prospective study enrolled 92 patients who underwent neoadjuvant chemoradiotherapy. Diffusion-weighted MRI sequences with two b-value combinations of b (0, 800) and b (0, 1000) were acquired before the start of neoadjuvant chemoradiotherapy and surgery. The pathological tumor regression grade was obtained according to the Mandard criteria, recommended by the seventh edition of the American Joint Committee on Cancer, to act as the reference standard. Pathological good responders (pathological tumor regression grade 1-2) were compared with poor responders (pathological tumor regression grade 3–5). Results The good responder group contained 37 (40.2%) patients and the poor responder group 55 (59.8%) patients. Both before and after neoadjuvant chemoradiotherapy, the mean ADC value for b = 1000 was significantly higher than that for b = 800. In the two patient groups, the post-ADC value and ΔADC for b = 800 were significantly lower than those for b = 1000, but percentages of ADC increase for b = 800 and b = 1000 showed no significant difference. Conclusions The percentage of ADC increase, as an optimized predictor unaffected by different b-values, may have a significant role in differentiating those patients with a good response to N-CRT from those with a poor response.
Collapse
|