1
|
Lemine AS, Ahmad Z, Al-Thani NJ, Hasan A, Bhadra J. Mechanical properties of human hepatic tissues to develop liver-mimicking phantoms for medical applications. Biomech Model Mechanobiol 2024; 23:373-396. [PMID: 38072897 PMCID: PMC10963485 DOI: 10.1007/s10237-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 03/26/2024]
Abstract
Using liver phantoms for mimicking human tissue in clinical training, disease diagnosis, and treatment planning is a common practice. The fabrication material of the liver phantom should exhibit mechanical properties similar to those of the real liver organ in the human body. This tissue-equivalent material is essential for qualitative and quantitative investigation of the liver mechanisms in producing nutrients, excretion of waste metabolites, and tissue deformity at mechanical stimulus. This paper reviews the mechanical properties of human hepatic tissues to develop liver-mimicking phantoms. These properties include viscosity, elasticity, acoustic impedance, sound speed, and attenuation. The advantages and disadvantages of the most common fabrication materials for developing liver tissue-mimicking phantoms are also highlighted. Such phantoms will give a better insight into the real tissue damage during the disease progression and preservation for transplantation. The liver tissue-mimicking phantom will raise the quality assurance of patient diagnostic and treatment precision and offer a definitive clinical trial data collection.
Collapse
Affiliation(s)
- Aicha S Lemine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Zubair Ahmad
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar
| | - Noora J Al-Thani
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Jolly Bhadra
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar.
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Iyad N, S.Ahmad M, Alkhatib SG, Hjouj M. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. Eur J Radiol Open 2023; 11:100503. [PMID: 37456927 PMCID: PMC10344828 DOI: 10.1016/j.ejro.2023.100503] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Contrast agents is used in magnetic resonance imaging (MRI) to improve the visibility of the details of the organ structures. Gadolinium-based contrast agent (GBCA) has been used since 1988 in MRI for diagnostic and follow-up of patients, the gadolinium good properties make it an effective choice for enhance the signal in MRI by increase its intensity and shortening the relaxation time of the proton. Recently, many studies show a gadolinium deposition in different human organs due to release of free gadolinium various body organs or tissue, which led to increased concern about the use of gadolinium agents, in this study, the potential diseases that may affect the patient and side effects that appear on the patient and related to accumulation of gadolinium were clarified, the study focused on the organs such as brain and bones in which gadolinium deposition was found and the lesions associated with it, and the diseases associated with gadolinium retention includes Nephrogenic Systemic Fibrosis (NSF) and Gadolinium deposition disease (GDD). Some studies tended to improve the contrast agents by developing a new non-gadolinium agents or development of next-generation gadolinium agents. In this review article the latest knowledge about MRI contrast agent.
Collapse
Affiliation(s)
- Nebal Iyad
- Ibn Rushd Radiology Centre, Hebron, Palestine
| | - Muntaser S.Ahmad
- Ibn Rushd Radiology Centre, Hebron, Palestine
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahliya University, Dheisha, Bethlehem, Palestine
| | - Sanaa G. Alkhatib
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahliya University, Dheisha, Bethlehem, Palestine
| | - Mohammad Hjouj
- Medical Imaging Department, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| |
Collapse
|
3
|
Groves LA, Keita M, Talla S, Kikinis R, Fichtinger G, Mousavi P, Camara M. A Review of Low-Cost Ultrasound Compatible Phantoms. IEEE Trans Biomed Eng 2023; 70:3436-3448. [PMID: 37339047 DOI: 10.1109/tbme.2023.3288071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Ultrasound-compatible phantoms are used to develop novel US-based systems and train simulated medical interventions. The price difference between lab-made and commercially available ultrasound-compatible phantoms lead to the publication of many papers categorized as low-cost in the literature. The aim of this review was to improve the phantom selection process by summarizing the pertinent literature. We compiled papers on US-compatible spine, prostate, vascular, breast, kidney, and li ver phantoms. We reviewed papers for cost and accessibility, providing an overview of the materials, construction time, shelf life, needle insertion limits, and manufacturing and evaluation methods. This information was summarized by anatomy. The clinical application associated with each phantom was also reported for those interested in a particular intervention. Techniques and common practices for building low-cost phantoms were provided. Overall, this article aims to summarize a breadth of ultrasound-compatible phantom research to enable informed phantom methods selection.
Collapse
|
4
|
Antoniou A, Evripidou N, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Tumor phantom model for MRI-guided focused ultrasound ablation studies. Med Phys 2023; 50:5956-5968. [PMID: 37226334 DOI: 10.1002/mp.16480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The persistent development of focused ultrasound (FUS) thermal therapy in the context of oncology creates the need for tissue-mimicking tumor phantom models for early-stage experimentation and evaluation of relevant systems and protocols. PURPOSE This study presents the development and evaluation of a tumor-bearing tissue phantom model for testing magnetic resonance imaging (MRI)-guided FUS (MRgFUS) ablation protocols and equipment based on MR thermometry. METHODS Normal tissue was mimicked by a pure agar gel, while the tumor simulator was differentiated from the surrounding material by including silicon dioxide. The phantom was characterized in terms of acoustic, thermal, and MRI properties. US, MRI, and computed tomography (CT) images of the phantom were acquired to assess the contrast between the two compartments. The phantom's response to thermal heating was investigated by performing high power sonications with a 2.4 MHz single element spherically focused ultrasonic transducer in a 3T MRI scanner. RESULTS The estimated phantom properties fall within the range of literature-reported values of soft tissues. The inclusion of silicon dioxide in the tumor material offered excellent tumor visualization in US, MRI, and CT. MR thermometry revealed temperature elevations in the phantom to ablation levels and clear evidence of larger heat accumulation within the tumor owing to the inclusion of silicon dioxide. CONCLUSION Overall, the study findings suggest that the proposed tumor phantom model constitutes a simple and inexpensive tool for preclinical MRgFUS ablation studies, and potentially other image-guided thermal ablation applications upon minimal modifications.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
5
|
Oglat AA. Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance. Biomimetics (Basel) 2022; 7:biomimetics7030130. [PMID: 36134934 PMCID: PMC9496229 DOI: 10.3390/biomimetics7030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnostic ultrasound or sonography is an image that can provide valuable information for diagnosing and treating a variety of diseases and conditions. The aim of this research study is to examine the performance and accuracy of the ultrasonic imaging system for the guarantee of diagnosis quality assurance, and to adjust the penetration settings to minimize the time of repeat scans and maintenance duration during research experiments. Measurements in this experiment included the resolution (axial and lateral) and focal zones. Moreover, the evaluation was done by completing all the measurements at different depths on a multipurpose phantom model 539. The phantom was bought from the market and was not fabricated by the author. The measurements were achieved by applying two different transducers: curved and linear (flat). The ultrasound images were obtained and tested by using calipers (electronic), and the estimations and observations were read by using all the taken measurements and images. As a result, because the phantom depths were different, the penetration settings were different too, indicating that the depth impacted the penetrations of the created ultrasound image. Moreover, after the comparison of the recorded measurements and results, it was found that all measurements were within the accepted (standard) value and that the true value was specified by the production of the phantom.
Collapse
Affiliation(s)
- Ammar A Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
6
|
Arm R, Shahidi A, Clarke C, Alabraba E. Synthesis and characterisation of a cancerous liver for presurgical planning and training applications. BMJ Open Gastroenterol 2022; 9:e000909. [PMID: 35853677 PMCID: PMC9301799 DOI: 10.1136/bmjgast-2022-000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Oncology surgeons use animals and cadavers in training because of a lack of alternatives. The aim of this work was to develop a design methodology to create synthetic liver models familiar to surgeons, and to help plan, teach and rehearse patient-specific cancerous liver resection surgery. DESIGN Synthetic gels were selected and processed to recreate accurate anthropomorphic qualities. Organic and synthetic materials were mechanically tested with the same equipment and standards to determine physical properties like hardness, elastic modulus and viscoelasticity. Collected data were compared with published data on the human liver. Patient-specific CT data were segmented and reconstructed and additive manufactured models were made of the liver vasculature, parenchyma and lesion. Using toolmaking and dissolvable scaffolds, models were transformed into tactile duplicates that could mimic liver tissue behaviour. RESULTS Porcine liver tissue hardness was found to be 23 H00 (±0.1) and synthetic liver was 10 H00 (±2.3), while human parenchyma was reported as 15.06 H00 (±2.64). Average elastic Young's modulus of human liver was reported as 0.012 MPa, and synthetic liver was 0.012 MPa, but warmed porcine parenchyma was 0.28 MPa. The final liver model demonstrated a time-dependant viscoelastic response to cyclic loading. CONCLUSION Synthetic liver was better than porcine liver at recreating the mechanical properties of living human liver. Warmed porcine liver was more brittle, less extensible and stiffer than both human and synthetic tissues. Qualitative surgical assessment of the model by a consultant liver surgeon showed vasculature was explorable and that bimanual palpation, organ delivery, transposition and organ slumping were analogous to human liver behaviour.
Collapse
Affiliation(s)
- Richard Arm
- School of Art and Design, Nottingham Trent University City Campus, Nottingham, UK
| | - Arash Shahidi
- School of Art and Design, Nottingham Trent University City Campus, Nottingham, UK
| | - Christopher Clarke
- Department of Radiology, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Edward Alabraba
- Department of Hepatobiliary and Pancreatic Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
7
|
Assessment of Diagnostic Imaging Sector in Public Hospitals in Northern Jordan. Healthcare (Basel) 2022; 10:healthcare10061136. [PMID: 35742187 PMCID: PMC9223183 DOI: 10.3390/healthcare10061136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
The most effective diagnostic methods in the medical field are diagnostic imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine, which are used to visualize internal body to diagnose it, determine potential treatment, and evaluate and forecast care results. Therefore, the purpose of this research is to assess the diagnostic imaging sector, at three major public hospitals in the northern part of Jordan, according to regional and global requirements. The assessment approach was based on knowledge of the accessibility of diagnostic imaging equipment and its quality assurance and performance, the quantity and efficiency of radiological technologists, and the design of radiology units and medical imaging chambers in many aspects based on the use of two tools, a questionnaire and checklists, to accomplish a comprehensive evaluation. The response rate of radiological technologists was 66%. The assessment reveals a noticeable increase in the number of radiological technologists in general with high academic qualification level. Additionally, the number of diagnostic imaging equipment in Jordan revealed a large deficiency in the population–device balance, and through checklists that evaluated both CT and MRI units, it was revealed that the rate of following global requirements and occupational health and safety (OHS) standards was high. The basic supplies available in both the CT and MRI units alike were high, which indicates the high quality of healthcare provided in Jordan.
Collapse
|
8
|
Bauer DF, Rosenkranz J, Golla AK, Tönnes C, Hermann I, Russ T, Kabelitz G, Rothfuss AJ, Schad LR, Stallkamp JL, Zöllner FG. Development of an abdominal phantom for the validation of an oligometastatic disease diagnosis workflow. Med Phys 2022; 49:4445-4454. [PMID: 35510908 DOI: 10.1002/mp.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The liver is a common site for metastatic disease, which is a challenging and life-threatening condition with a grim prognosis and outcome. We propose a standardized workflow for the diagnosis of oligometastatic disease (OMD), as a gold standard workflow has not been established yet. The envisioned workflow comprises the acquisition of a multimodal image dataset, novel image processing techniques, and cone beam computed tomography (CBCT)-guided biopsy for subsequent molecular subtyping. By combining morphological, molecular, and functional information about the tumor, a patient-specific treatment planning is possible. We designed and manufactured an abdominal liver phantom that we used to demonstrate multimodal image acquisition, image processing, and biopsy of the OMD diagnosis workflow. METHODS The anthropomorphic abdominal phantom contains a rib cage, a portal vein, lungs, a liver with six lesions, and a hepatic vessel tree. This phantom incorporates three different lesion types with varying visibility under computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography CT (PET-CT), which reflects clinical reality. The phantom is puncturable and the size of the corpus and the organs is comparable to those of a real human abdomen. By using several modern additive manufacturing techniques, the manufacturing process is reproducible and allows to incorporate patient-specific anatomies. As a first step of the OMD diagnosis workflow, a pre-interventional CT, MRI, and PET-CT dataset of the phantom was acquired. The image information was fused using image registration and organ information was extracted via image segmentation. A CBCT-guided needle puncture experiment was performed, where all six liver lesions were punctured with coaxial biopsy needles. RESULTS Qualitative observation of the image data and quantitative evaluation using contrast-to-noise ratio (CNR) confirms that one lesion type is visible only in MRI and not CT. The other two lesion types are visible in CT and MRI. The CBCT-guided needle placement was performed for all six lesions, including those visible only in MRI and not CBCT. This was possible by successfully merging multimodal pre-interventional image data. Lungs, bones, and liver vessels serve as realistic inhibitions during needle path planning. CONCLUSIONS We have developed a reusable abdominal phantom that has been used to validate a standardized OMD diagnosis workflow. Utilizing the phantom, we have been able to show that a multimodal imaging pipeline is advantageous for a comprehensive detection of liver lesions. In a CBCT-guided needle placement experiment we have punctured lesions that are invisible in CBCT using registered pre-interventional MRI scans for needle path planning. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dominik F Bauer
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Rosenkranz
- Fraunhofer Institute for Manufacturing Engineering and Automation, Department of Clinical Health Technologies, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Tönnes
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingo Hermann
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tom Russ
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jan L Stallkamp
- Automation in Medicine and Biotechnology, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Ahmad MS, Makhamrah O, Suardi N, Shukri A, Ashikin Nik Ab Razak NN, Oglat AA, Mohammad H. Hepatocellular carcinoma liver dynamic phantom for MRI. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Oglat AA, Dheyab MA. Performance Evaluation of Ultrasonic Imaging System (Part I). J Med Ultrasound 2021; 29:258-263. [PMID: 35127405 PMCID: PMC8772471 DOI: 10.4103/jmu.jmu_166_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 11/12/2022] Open
Abstract
Background: Diagnostic ultrasound or sonography is an image which can provide valuable information for diagnosing and treating a variety of diseases and conditions. This experiment was done to check the performance and evaluate the ultrasonic imaging system. There were three tests performed in this experiment: dead zone (transducer ring-down), vertical measurement calibration, and horizontal measurement calibration. Methods: The evaluation was made by performed all the tests with different depth on two different multipurpose phantom model #539. The tests were also performed by two different probes which were curved and flat (linear probe). The images were taken, and the measurements were made by electronic calipers on the ultrasound machine system. Observations and evaluations were done via all images and measurements taken. Results: The images formed by two various probes were different. The penetration settings were different since the depths were different. The depth influenced the penetrations to the formed image. From the comparison of all results and measurements recorded were all under the accepted value of the standard that was given by the manufacture of the phantom. Conclusion: Therefore, it can be concluded that the measurements were all not exceeding 2% of the standard value given based on the result that we get.
Collapse
Affiliation(s)
- Ammar A Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammed Ali Dheyab
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
11
|
Athamnah SI, Oglat AA, Fohely F. Diagnostice breast elastography estimation from doppler imaging using central difference (CD) and least-squares (LS) algorithms. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Wang KJ, Chen CH, Chen JJ(J, Ciou WS, Xu CB, Du YC. An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration. SENSORS (BASEL, SWITZERLAND) 2021; 21:2927. [PMID: 33922012 PMCID: PMC8122492 DOI: 10.3390/s21092927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
An ultrasonic examination is a clinically universal and safe examination method, and with the development of telemedicine and precision medicine, the robotic ultrasound system (RUS) integrated with a robotic arm and ultrasound imaging system receives increasing attention. As the RUS requires precision and reproducibility, it is important to monitor the real-time calibration of the RUS during examination, especially the angle of the probe for image detection and its force on the surface. Additionally, to speed up the integration of the RUS and the current medical ultrasound system (US), the current RUSs mostly use a self-designed fixture to connect the probe to the arm. If the fixture has inconsistencies, it may cause an operating error. In order to improve its resilience, this study proposed an improved sensing method for real-time force and angle calibration. Based on multichannel pressure sensors, an inertial measurement unit (IMU), and a novel sensing structure, the ultrasonic probe and robotic arm could be simply and rapidly combined, which rendered real-time force and angle calibration at a low cost. The experimental results show that the average success rate of the downforce position identification achieved was 88.2%. The phantom experiment indicated that the method could assist the RUS in the real-time calibration of both force and angle during an examination.
Collapse
Affiliation(s)
- Kuan-Ju Wang
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (K.-J.W.); (J.-J.C.); (C.-B.X.)
- Brain Navi Biotechnology Co., Ltd., No.66-1, Shengyi 5th Rd. Zhubei City, Hsinchu County 302041, Taiwan; (C.-H.C.); (W.-S.C.)
| | - Chieh-Hsiao Chen
- Brain Navi Biotechnology Co., Ltd., No.66-1, Shengyi 5th Rd. Zhubei City, Hsinchu County 302041, Taiwan; (C.-H.C.); (W.-S.C.)
- China Medical University Beigang Hospital, No.123, Xinde Road, Xinjia Village, Beigang Township, Yunlin County 65152, Taiwan
| | - Jia-Jin (Jason) Chen
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (K.-J.W.); (J.-J.C.); (C.-B.X.)
| | - Wei-Siang Ciou
- Brain Navi Biotechnology Co., Ltd., No.66-1, Shengyi 5th Rd. Zhubei City, Hsinchu County 302041, Taiwan; (C.-H.C.); (W.-S.C.)
| | - Cheng-Bin Xu
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (K.-J.W.); (J.-J.C.); (C.-B.X.)
| | - Yi-Chun Du
- Department of Biomedical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (K.-J.W.); (J.-J.C.); (C.-B.X.)
- Medical Device Innovation Center, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan
| |
Collapse
|