1
|
Xiong Y, Zheng Y, Long W, Wang Y, Wang Q, You Y, Zhou Y, Zhong J, Ge Y, Li Y, Huang Y, Zhou Z. Study on microwave ablation temperature prediction model based on grayscale ultrasound texture and machine learning. PLoS One 2024; 19:e0308968. [PMID: 39321182 PMCID: PMC11423965 DOI: 10.1371/journal.pone.0308968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Temperature prediction is crucial in the clinical ablation treatment of liver cancer, as it can be used to estimate the coagulation zone of microwave ablation. METHODS Experiments were conducted on 83 fresh ex vivo porcine liver tissues at two ablation powers of 15 W and 20 W. Ultrasound grayscale images and temperature data from multiple sampling points were collected. The machine learning method of random forests was used to train the selected texture features, obtaining temperature prediction models for sampling points and the entire ultrasound imaging area. The accuracy of the algorithm was assessed by measuring the area of the hyperechoic area in the porcine liver tissue cross-section and ultrasound grayscale images. RESULTS The model exhibited a high degree of accuracy in temperature prediction and the identification of coagulation zone. Within the test sets for the 15 W and 20 W power groups, the average absolute error for temperature prediction was 1.14°C and 4.73°C, respectively. Notably, the model's accuracy in measuring the area of coagulation was higher than that of traditional ultrasonic grey-scale imaging, with error ratios of 0.402 and 0.182 for the respective power groups. Additionally, the model can filter out texture features with a high correlation to temperature, providing a certain degree of interpretability. CONCLUSION The temperature prediction model proposed in this study can be applied to temperature monitoring and coagulation zone range assessment in microwave ablation.
Collapse
Affiliation(s)
- Yan Xiong
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Wei Long
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Qin Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi You
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuheng Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiang Zhong
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunxi Ge
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Youchen Li
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
2
|
Nakamura S, Tada T, Sue M, Matsuo Y, Murakami S, Muramatsu T, Morii K, Okada H. Clinical Outcomes of Next-Generation Microwave Thermosphere Ablation for Hepatocellular Carcinoma with Primarily Hepatitis-Related Etiology. J Clin Med 2023; 12:7577. [PMID: 38137645 PMCID: PMC10743866 DOI: 10.3390/jcm12247577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIM We investigated the clinical outcomes of patients with hepatocellular carcinoma (HCC) who underwent next-generation microwave thermosphere ablation (MTA). METHODS A total of 429 patients with 607 HCCs (maximum tumor diameter ≤40 mm) were included. We defined the following areas of the liver as those where MTA therapy is difficult to perform: caudate lobe and areas near the primary and secondary branches of the intrahepatic portal vein, inferior vena cava, gallbladder, heart, duodenum, abdominal esophagus, collateral veins around the liver, and spleen. Factors which predisposed patients to local tumor recurrence in the context of tumor location and complications were examined. RESULTS The primary etiologies of HCC were hepatitis-related: 259 (60.4%) cases of HCV, 31 (7.3%) cases of HBV, and two instances of both. Median maximum tumor diameter was 15.0 (interquartile range, 10.0-21.0) mm. There were 86 tumors in areas of the liver where MTA is difficult. The most common area was near the primary and secondary branches of the intrahepatic portal vein (26 nodules). The cumulative local tumor recurrence rates at 1, 2, and 3 years were 4.4%, 8.0%, and 8.5%, respectively. The cumulative local tumor recurrence rate differed significantly by tumor size group: 6.6%, 13.8%, and 29.4% at three years in the ≤20 mm group (n = 483), 20-30 mm group (n = 107), and ≥30 mm group (n = 17), respectively (p < 0.001). The cumulative local tumor recurrence rate was similar despite difficult-to-treat status (p = 0.169). In the multivariable analysis, tumor size (>15 mm) (hazard ratio [HR], 2.15; 95% confidence interval [CI], 1.11-4.16; p = 0.023) and ablative margin (<3 mm) (HR, 2.94; 95% CI, 1.52-5.71; p = 0.001) were significantly associated with local tumor recurrence. Only tumor size (>15 mm) (odds ratio, 3.41 95% CI, 1.53-7.84; p = 0.026) was significantly associated with complications. CONCLUSIONS MTA is a safe and effective local ablation therapy for HCC, even for tumors located in areas of the liver where local ablation therapy is difficult.
Collapse
Affiliation(s)
- Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital, 1-12-1 Shimoteno, Himeji 670-8540, Japan; (T.T.); (M.S.); (K.M.); (H.O.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
De Vita E, Lo Presti D, Massaroni C, Iadicicco A, Schena E, Campopiano S. A review on radiofrequency, laser, and microwave ablations and their thermal monitoring through fiber Bragg gratings. iScience 2023; 26:108260. [PMID: 38026224 PMCID: PMC10660479 DOI: 10.1016/j.isci.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation of tumors aims to apply extreme temperatures inside the target tissue to achieve substantial tumor destruction in a minimally invasive manner. Several techniques are comprised, classified according to the type of energy source. However, the lack of treatment selectivity still needs to be addressed, potentially causing two risks: i) incomplete tumor destruction and recurrence, or conversely, ii) damage of the surrounding healthy tissue. Therefore, the research herein reviewed seeks to develop sensing systems based on fiber Bragg gratings (FBGs) for thermal monitoring inside the lesion during radiofrequency, laser, and microwave ablation. This review shows that, mainly thanks to multiplexing and minimal invasiveness, FBGs provide an optimal sensing solution. Their temperature measurements are the feedback to control the ablation process and allow to investigate different treatments, compare their outcomes, and quantify the impact of factors such as proximity to thermal probe and blood vessels, perfusion, and tissue type.
Collapse
Affiliation(s)
- Elena De Vita
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Agostino Iadicicco
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Stefania Campopiano
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| |
Collapse
|
4
|
Varble NA, Bakhutashvili I, Reed SL, Delgado J, Tokoutsi Z, Frackowiak B, Baragona M, Karanian JW, Wood BJ, Pritchard WF. Morphometric characterization and temporal temperature measurements during hepatic microwave ablation in swine. PLoS One 2023; 18:e0289674. [PMID: 37540658 PMCID: PMC10403086 DOI: 10.1371/journal.pone.0289674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Heat-induced destruction of cancer cells via microwave ablation (MWA) is emerging as a viable treatment of primary and metastatic liver cancer. Prediction of the impacted zone where cell death occurs, especially in the presence of vasculature, is challenging but may be achieved via biophysical modeling. To advance and characterize thermal MWA for focal cancer treatment, an in vivo method and experimental dataset were created for assessment of biophysical models designed to dynamically predict ablation zone parameters, given the delivery device, power, location, and proximity to vessels. MATERIALS AND METHODS MWA zone size, shape, and temperature were characterized and monitored in the absence of perfusion in ex vivo liver and a tissue-mimicking thermochromic phantom (TMTCP) at two power settings. Temperature was monitored over time using implanted thermocouples with their locations defined by CT. TMTCPs were used to identify the location of the ablation zone relative to the probe. In 6 swine, contrast-enhanced CTs were additionally acquired to visualize vasculature and absence of perfusion along with corresponding post-mortem gross pathology. RESULTS Bench studies demonstrated average ablation zone sizes of 4.13±1.56cm2 and 8.51±3.92cm2, solidity of 0.96±0.06 and 0.99±0.01, ablations centered 3.75cm and 3.5cm proximal to the probe tip, and temperatures of 50 ºC at 14.5±13.4s and 2.5±2.1s for 40W and 90W ablations, respectively. In vivo imaging showed average volumes of 9.8±4.8cm3 and 33.2±28.4cm3 and 3D solidity of 0.87±0.02 and 0.75±0.15, and gross pathology showed a hemorrhagic halo area of 3.1±1.2cm2 and 9.1±3.0cm2 for 40W and 90W ablations, respectfully. Temperatures reached 50ºC at 19.5±9.2s and 13.0±8.3s for 40W and 90W ablations, respectively. CONCLUSION MWA results are challenging to predict and are more variable than manufacturer-provided and bench predictions due to vascular stasis, heat-induced tissue changes, and probe operating conditions. Accurate prediction of MWA zones and temperature in vivo requires comprehensive thermal validation sets.
Collapse
Affiliation(s)
- Nicole A. Varble
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
- Philips, Best, The Netherlands
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheridan L. Reed
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Delgado
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | | | | | | | - John W. Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| | - Bradford J. Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
- Bioengineering and National Cancer Institute Center, Bethesda, Maryland, United States of America
| | - William F. Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National, Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Andresciani F, Pacella G, Vertulli D, Altomare C, Bitonti MT, Bruno A, Cea L, Faiella E, Beomonte Zobel B, Grasso RF. Microwave ablation using two simultaneous antennas for the treatment of liver malignant lesions: a 3 year single-Centre experience. Int J Hyperthermia 2023; 40:2163309. [PMID: 36599421 DOI: 10.1080/02656736.2022.2163309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND sequential or simultaneous applications of multiple antennas have been proposed to create larger ablation zone; however, there is a lack of data in patients affected by liver tumors, with potentially different results from animal liver models. The purpose of this study was to evaluate efficacy and safety of liver percutaneous microwave ablation using simultaneous activation of two antennas to treat lesions bigger than 2,5 cm; particularly the focus was assessing whether the ratio of ablation zone volume in millimeters to applied energy in kilojoules [R(AZ:E)] differs between hepatocellular carcinoma in a cirrhotic liver and liver metastasis and if it is correlated to complications incidence or recurrence of disease. METHODS Fifty-five liver microwave ablation performed with two simultaneous antennas from March 2017 to June 2021 were retrospectively reviewed; 9 procedures were excluded due to the association with Chemoembolization. Size, shape, volume of lesions and ablation zones were recorded. Technical success was defined as complete devascularization of the treated area at the post-procedural CT. R(AZ:E) was determined dividing the ablation zone volume in mm3 by the amount of energy in kilojoules applied in each procedure and complications were reported. RESULTS Technical success was achieved in all the procedures. Mean R(AZ:E) was 0,75 ± 0,58. T-student test for patients with HCC and patients with metastasis about R(AZ:E) was significant (p = 0.03). The incidence of bilomas was lower for HCC (p = 0.022). One-month follow-up showed Complete Response (CR) in 44/46 (95,6%) patients; Three-six months follow-up demonstrated: CR in 43/46 (93.5%) cases and 12 months follow-up highlighted CR in 40/45 (88,9%) cases. CONCLUSIONS These results provide preliminary evidence of efficacy and safety of simultaneous liver MWA using two antennas, highlighting the importance of procedural indications.
Collapse
Affiliation(s)
- Flavio Andresciani
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Giuseppina Pacella
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Daniele Vertulli
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Carlo Altomare
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Maria Teresa Bitonti
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Amalia Bruno
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Laura Cea
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | | | - Bruno Beomonte Zobel
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Rosario Francesco Grasso
- Diagnostic and Interventional Radiology Department; Departmental Faculty of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
6
|
De Tommasi F, Massaroni C, Grasso RF, Carassiti M, Schena E. Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges. SENSORS (BASEL, SWITZERLAND) 2021; 21:5470. [PMID: 34450911 PMCID: PMC8400360 DOI: 10.3390/s21165470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Bone metastases and osteoid osteoma (OO) have a high incidence in patients facing primary lesions in many organs. Radiotherapy has long been the standard choice for these patients, performed as stand-alone or in conjunction with surgery. However, the needs of these patients have never been fully met, especially in the ones with low life expectancy, where treatments devoted to pain reduction are pivotal. New techniques as hyperthermia treatments (HTs) are emerging to reduce the associated pain of bone metastases and OO. Temperature monitoring during HTs may significantly improve the clinical outcomes since the amount of thermal injury depends on the tissue temperature and the exposure time. This is particularly relevant in bone tumors due to the adjacent vulnerable structures (e.g., spinal cord and nerve roots). In this Review, we focus on the potential of temperature monitoring on HT of bone cancer. Preclinical and clinical studies have been proposed and are underway to investigate the use of different thermometric techniques in this scenario. We review these studies, the principle of work of the thermometric techniques used in HTs, their strengths, weaknesses, and pitfalls, as well as the strategies and the potential of improving the HTs outcomes.
Collapse
Affiliation(s)
- Francesca De Tommasi
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| | - Rosario Francesco Grasso
- Unit of Interventional Radiology, School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| |
Collapse
|
7
|
De Landro M, Ianniello J, Yon M, Wolf A, Quesson B, Schena E, Saccomandi P. Fiber Bragg Grating Sensors for Performance Evaluation of Fast Magnetic Resonance Thermometry on Synthetic Phantom. SENSORS 2020; 20:s20226468. [PMID: 33198326 PMCID: PMC7696215 DOI: 10.3390/s20226468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
The increasing recognition of minimally invasive thermal treatment of tumors motivate the development of accurate thermometry approaches for guaranteeing the therapeutic efficacy and safety. Magnetic Resonance Thermometry Imaging (MRTI) is nowadays considered the gold-standard in thermometry for tumor thermal therapy, and assessment of its performances is required for clinical applications. This study evaluates the accuracy of fast MRTI on a synthetic phantom, using dense ultra-short Fiber Bragg Grating (FBG) array, as a reference. Fast MRTI is achieved with a multi-slice gradient-echo echo-planar imaging (GRE-EPI) sequence, allowing monitoring the temperature increase induced with a 980 nm laser source. The temperature distributions measured with 1 mm-spatial resolution with both FBGs and MRTI were compared. The root mean squared error (RMSE) value obtained by comparing temperature profiles showed a maximum error of 1.2 °C. The Bland-Altman analysis revealed a mean of difference of 0.1 °C and limits of agreement 1.5/−1.3 °C. FBG sensors allowed to extensively assess the performances of the GRE-EPI sequence, in addition to the information on the MRTI precision estimated by considering the signal-to-noise ratio of the images (0.4 °C). Overall, the results obtained for the GRE-EPI fully satisfy the accuracy (~2 °C) required for proper temperature monitoring during thermal therapies.
Collapse
Affiliation(s)
- Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, via Giuseppe La Masa 1, 20156 Milan, Italy;
- Correspondence: ; Tel.: +39-02-2399-8571
| | - Jacopo Ianniello
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (J.I.); (E.S.)
| | - Maxime Yon
- Institut Hospitalo-Universitaire, Liryc Institut de Rythmologie et Modélisation Cardiaque, Avenue du Haut Lévêque, 33600 Pessac, France; (M.Y.); (B.Q.)
| | - Alexey Wolf
- Laboratory of Fiber Optics, Institute of Automation and Electrometry of the SB RAS, 1 Acad. Koptyug Ave., 630090 Novosibirsk, Russia;
| | - Bruno Quesson
- Institut Hospitalo-Universitaire, Liryc Institut de Rythmologie et Modélisation Cardiaque, Avenue du Haut Lévêque, 33600 Pessac, France; (M.Y.); (B.Q.)
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (J.I.); (E.S.)
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, via Giuseppe La Masa 1, 20156 Milan, Italy;
| |
Collapse
|
8
|
Tehrani MHH, Soltani M, Kashkooli FM, Raahemifar K. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach. PLoS One 2020; 15:e0233219. [PMID: 32542034 PMCID: PMC7295236 DOI: 10.1371/journal.pone.0233219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Microwave Ablation (MWA) is one of the most recent developments in the field of thermal therapy. This approach is an effective method for thermal tumor ablation by increasing the temperature above the normal physiological threshold to kill cancer cells with minimum side effects to surrounding organs due to rapid heat dispersive tissues. In the present study, the effects of the shape and size of the tumor on MWA are investigated. To obtain the temperature gradient, coupled bio-heat and electromagnetic equations are solved using a three-dimensional finite element method (FEM). To extract cellular response at different temperatures and times, the three-state mathematical model was employed to achieve the ablation zone size. Results show that treatment of larger tumors is more difficult than that of smaller ones. By doubling the diameter of the tumor, the percentage of dead cancer cells is reduced by 20%. For a spherical tumor smaller than 2 cm, applying 50 W input power compared to 25 W has no significant effects on treatment efficiency and only increases the risk of damage to adjacent tissues. However, for tumors larger than 2 cm, it can increase the ablation zone up to 21%. In the spherical and oblate tumors, the mean percentage of dead cells at 6 GHz is nearly 30% higher than that at 2.45GHz, but for prolate tumors, treatment efficacy is reduced by 10% at a higher frequency. Moreover, the distance between two slots in the coaxial double slot antenna is modified based on the best treatment of prolate tumors. The findings of this study can be used to choose the optimum frequency and the best antenna design according to the shape and size of the tumor.
Collapse
Affiliation(s)
- Masoud H. H. Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaamran Raahemifar
- Electrical and Computer Engineering Department, Sultan Qaboos University, Muscat, Sultanate of Oman
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada
- College of Information Sciences and Technology (IST), Data Science and Artificial Intelligence Program, Penn State University, State College, Pennsylvania, PA, United States of America
| |
Collapse
|
9
|
De Vita E, Zaltieri M, De Tommasi F, Massaroni C, Faiella E, Zobel BB, Iadicicco A, Schena E, Grasso RF, Campopiano S. Multipoint Temperature Monitoring of Microwave Thermal Ablation in Bones through Fiber Bragg Grating Sensor Arrays. SENSORS 2020; 20:s20113200. [PMID: 32512922 PMCID: PMC7308871 DOI: 10.3390/s20113200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Bones are a frequent site of metastases that cause intolerable cancer-related pain in 90% of patients, making their quality of life poor. In this scenario, being able to treat bone oncology patients by means of minimally invasive techniques can be crucial to avoid surgery-related risks and decrease hospitalization times. The use of microwave ablation (MWA) is gaining broad clinical acceptance to treat bone tumors. It is worth investigating temperature variations in bone tissue undergoing MWA because the clinical outcomes can be inferred from this parameter. Several feasibility studies have been performed, but an experimental analysis of the temperature trends reached into the bone during the MWA has not yet been assessed. In this work, a multi-point temperature study along the bone structure during such treatment is presented. The study has been carried out on ex vivo bovine femur and tibia, subjected to MWA. An overall of 40 measurement points covering a large sensing area was obtained for each configuration. Temperature monitoring was performed by using 40 fiber Bragg grating (FBGs) sensors (four arrays each housing 10 FBGs), inserted into the bones at specific distances to the microwave antenna. As result, the ability of this experimental multi-point monitoring approach in tracking temperature variations within bone tissue during MWA treatments was shown. This study lays the foundations for the design of a novel approach to study the effects of MWA on bone tumors. As consequence, the MWA treatment settings could be optimized in order to maximize the treatment effects of such a promising clinical application, but also customized for the specific tumor and patient.
Collapse
Affiliation(s)
- Elena De Vita
- Department of Engineering, University of Naples “Parthenope”, Centro Direzionale Isola C4, 80143 Naples, Italy; (E.D.V.); (A.I.)
| | - Martina Zaltieri
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (F.D.T.); (C.M.)
| | - Francesca De Tommasi
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (F.D.T.); (C.M.)
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (F.D.T.); (C.M.)
| | - Eliodoro Faiella
- School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (E.F.); (B.B.Z.); (R.F.G.)
| | - Bruno Beomonte Zobel
- School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (E.F.); (B.B.Z.); (R.F.G.)
| | - Agostino Iadicicco
- Department of Engineering, University of Naples “Parthenope”, Centro Direzionale Isola C4, 80143 Naples, Italy; (E.D.V.); (A.I.)
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (F.D.T.); (C.M.)
- Correspondence: (E.S.); (S.C.)
| | - Rosario Francesco Grasso
- School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (E.F.); (B.B.Z.); (R.F.G.)
| | - Stefania Campopiano
- Department of Engineering, University of Naples “Parthenope”, Centro Direzionale Isola C4, 80143 Naples, Italy; (E.D.V.); (A.I.)
- Correspondence: (E.S.); (S.C.)
| |
Collapse
|
10
|
Franz PL, Wang H. Development of hypothermia measurable fiber radiometric thermometer for thermotherapy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960205. [PMID: 32077211 DOI: 10.1002/jbio.201960205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 05/11/2023]
Abstract
Temperature monitoring is extremely important during thermotherapy. Fiber-optic temperature sensors are preferred because of their flexibility and immunity to electromagnetic interference. Although many types of fiber-optic sensors have been developed, clinically adopting them remains challenging. Here, we report a silica fiber-based radiometric thermometer using a low-cost extended InGaAs detector to detect black body radiation between 1.7 and 2.4 μm. For the first time, this silica fiber-based thermometer is capable of measuring temperatures down to 35°C, making it suitable for monitoring hyperthermia during surgery. In particular, the thermometer has potential for seamless integration with current silica fiber catheters, which are widely used in laser interstitial thermotherapy. The feasibility, capability and sensitivity of tracking tissue temperature variation were proved through ex vivo tissue studies. After further improvement, the technology has the potential to be translated into clinics for monitoring tissue temperature.
Collapse
Affiliation(s)
- Paris L Franz
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, USA
- Currently associated with the Department of Applied Physics, Stanford University, Stanford, California, USA
| | - Hui Wang
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| |
Collapse
|
11
|
Imajo K, Ogawa Y, Yoneda M, Saito S, Nakajima A. A review of conventional and newer generation microwave ablation systems for hepatocellular carcinoma. J Med Ultrason (2001) 2020; 47:265-277. [PMID: 31960190 DOI: 10.1007/s10396-019-00997-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
Abstract
Although microwave ablation (MWA) exhibits a high thermal efficiency, the major limitation of conventional MWA systems is the lack of predictability of the ablation zone size and shape. Therefore, a specific newer generation MWA system, The Emprint™ Ablation System with Thermosphere™ Technology, was designed to create predictable large spherical zones of ablation that are not impacted by varying tissue environments. The time required for ablation with MWA systems is short, and the shape of the necrosis is elliptical with the older systems and spherical with the new system. In addition, because MWA has no heat-sink effect, it can be used to ablate tumors adjacent to major vessels. Although these factors yield a large ablation volume and result in good local control, excessive ablation of liver tissue and unexpected ablation of surrounding organs are possible. Therefore, MWA should be carefully performed. This review highlights the efficacy and complications of MWA performed with conventional systems and the newer generation system in patients with hepatocellular carcinoma (HCC). MWA with the newer generation system seems to be a promising treatment option for large HCCs and secondary hepatic malignancies, with several advantages over other available ablation techniques, including conventional MWA. However, further randomized controlled trials are necessary to fully clarify the benefits and pitfalls of this new system.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
12
|
Iacoponi S, Massaroni C, Lo Presti D, Saccomandi P, Caponero MA, DrAmato R, Schena E. Polymer-coated fiber optic probe for the monitoring of breathing pattern and respiratory rate. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:1616-1619. [PMID: 30440702 DOI: 10.1109/embc.2018.8512566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, no-invasive and small size systems are meeting the demand of the new healthcare system, in which the vital signs monitoring is gaining in importance. In this context, Fiber Bragg grating (FBG) sensors are becoming very popular and FBG-based systems could be used for monitoring vital signs. At the same time, FBG could be able to sense chemical parameters by the polymer functionalization. The aim of our study was investigating the ability of a polymer-coated FBG-based probe for monitoring breathing patterns and respiratory rates. We tested the proposed FBG-based probe on 9 healthy volunteers during spirometry, the most common pulmonary function test. Results showed the high accuracy of the proposed probe to detect respiratory rate. The comparison between the respiratory rates estimated by the probe with the ones by the spirometer showed the absolute value of the percentage errors lower than 2.07% (in the 78% of cases <.91%). Lastly, a Bland Altman analysis was performed to compare the instantaneous respiratory rate values gathered by the spirometer and the FBG probe showing the feasibility of breath-by-breath monitoring by the proposed probe. Results showed a bias of 0.06± 2.90 $\mathrm{breaths}\square {\mathrm {min}}^{-1}$. Additionally, our system was able to follow the breathing activities and monitoring the breathing patterns.
Collapse
|
13
|
Cazzato RL, De Marini P, Leclerc L, Dalili D, Koch G, Rao P, Auloge P, Garnon J, Gangi A. Large nearly spherical ablation zones are achieved with simultaneous multi-antenna microwave ablation applied to treat liver tumours. Eur Radiol 2019; 30:971-975. [PMID: 31529251 DOI: 10.1007/s00330-019-06431-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Abstract
AIM To investigate the shape and the volume of ablation zones obtained with microwave ablation (MWA) performed with multiple antennas in liver tumours. MATERIALS AND METHODS Tumour volume, number of antennas, size (long diameter (Dl), along the antenna axis; short diameter (Ds), perpendicular to the antenna axis; vertical diameter (Dv), vertical to both Dl and Ds) and shape (roundness index (RI); 1 corresponds to a sphere) of the ablation zone, ablation volume, and complications were evaluated. RESULTS Mean Dl, Ds, and Dv were 4.7 ± 1.4 cm, 3.9 ± 1.4 cm, and 3.8 ± 1.0 cm, respectively. Mean RIs (Ds/Dl, Dv/Dl, and Dv/Ds) were 0.83 ± 0.13, 0.83 ± 0.17, and 1.02 ± 0.23, respectively, without any difference between the mean RI obtained with the double (0.84 ± 0.01) and that with the triple-antenna (0.93 ± 0.13) approach (p = 0.25). Mean ablation volume was 41 ± 32 cm3 (vs. mean tumour volume 13 ± 10 cm3; range 1-40; p < 0.001). No complications were noted. CONCLUSIONS Simultaneous multi-antenna MWA of liver tumours results in large nearly spherical ablation zones. KEY POINTS • Simultaneous multi-antenna microwave ablation of liver tumours results in nearly spherical ablation zones. • The multi-antenna approach generates oversized ablation volumes compared with the target tumour volume. • The multi-antenna approach is safe.
Collapse
Affiliation(s)
- Roberto Luigi Cazzato
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France.
| | - Pierre De Marini
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| | - Loïc Leclerc
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| | - Danoob Dalili
- Department of Diagnostic and Interventional Radiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
- Section of Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillaume Koch
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| | - Pramod Rao
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| | - Pierre Auloge
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| | - Julien Garnon
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| | - Afshin Gangi
- Service d'Imagerie Interventionnelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'hopital, 67000, Strasbourg, France
| |
Collapse
|
14
|
Imajo K, Tomeno W, Kanezaki M, Honda Y, Kessoku T, Ogawa Y, Yoshida K, Yoneda M, Kirikoshi H, Ono M, Kaneta T, Inoue T, Teratani T, Saito S, Nakajima A. New microwave ablation system for unresectable liver tumors that forms large, spherical ablation zones. J Gastroenterol Hepatol 2018; 33:2007-2014. [PMID: 29851164 DOI: 10.1111/jgh.14294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/21/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The aim of this study was to assess the efficacy of a new microwave ablation (MWA) system, the Emprint Ablation System, for the ablation of unresectable large liver tumors (≥ 30 mm). METHODS Twenty-one hepatic tumors (mean diameter, 34.7 mm) from 21 patients who underwent percutaneous MWA were included in this cross-sectional study. A volume analyzer based on computed tomography imaging was used for all patients within the month before and month after the procedure to evaluate the shape and volume of ablation zones. In addition, computed tomography imaging was performed again 3 months after the procedure to evaluate the presence of residual tumors and local recurrence. RESULTS Mean ablation time was 11.3 min, and mean overall procedure time was 33.4 min. An ablated adrenal gland-induced Takotsubo (stress) cardiomyopathy occurred immediately after MWA as a major complication in one patient. Roundness index A, B, and C presented a mean value of 0.94, 0.94, and 1.01, respectively (all values near 1 is a perfect sphere), indicating that a spherical ablation zone was achieved. The mean ablation volume was larger than the volume of tumors (24.5 vs 41.7 cm3 ). Residual tumors were confirmed in only 4.8% of tumors after a single ablation session. There was no local recurrence. CONCLUSIONS In our experience, the new MWA system provides an effective treatment option for unresectable large liver tumors. However, to ablate the liver tumors safely, it is necessary to consider the surrounding organs, such as the adrenal glands.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Tomeno
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mineo Kanezaki
- Department of Gastroenterology, Kanto Medical Center Tokyo, Tokyo, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Yoshida
- Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Kirikoshi
- Department of Clinical Laboratory, Yokohama City University Hospital, Yokohama, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi Medical School, Nankoku, Kochi, Japan
| | - Tomohiro Kaneta
- Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomio Inoue
- Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takuma Teratani
- Department of Gastroenterology, Kanto Medical Center Tokyo, Tokyo, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
15
|
Vogl TJ, Roman A, Nour-Eldin NEA, Hohenforst-Schmidt W, Bednarova I, Kaltenbach B. A comparison between 915 MHz and 2450 MHz microwave ablation systems for the treatment of small diameter lung metastases. Diagn Interv Radiol 2018; 24:31-37. [PMID: 29317376 DOI: 10.5152/dir.2018.17017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE We aimed to retrospectively compare the local tumor control rates between low frequency (LF) and high frequency (HF) microwave ablation devices in the treatment of <3 cm lung metastases. METHODS A total of 36 patients (55 tumors) were treated with the LF system (915 MHz) and 30 patients (39 tumors) were treated with the HF system (2450 MHz) between January 2011 and March 2016. Computed tomography (CT) scans performed prior to and 24 hours after the ablation were used to measure the size of the ablation zone and to calculate the ablation margin. The subsequent CTs were used to detect local tumor progression. Possible predictive factors for local progression were analyzed. All patients had a minimum follow-up of 3 months with a median of 13.8 months for the LF group and 11.7 months for the HF group. RESULTS The ablation margin (P = 0.015), blood vessel proximity (P = 0.006), and colorectal origin (P = 0.029) were significantly associated with the local progression rate. The local progression rates were 36.3% for LF ablations and 12.8% for HF ablations. The 6, 12, and 18 months local progression-free survival rates were 79%, 65.2% and 53% for the LF group and 97.1%, 93.7%, and 58.4% for the HF group, with a significant difference between the survival curves (P = 0.048). CONCLUSION HF ablations resulted in larger ablation margins with fewer local progression compared with LF ablations.
Collapse
Affiliation(s)
- Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Andrei Roman
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany; Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nour-Eldin A Nour-Eldin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany; Department of Diagnostic and Interventional Radiology, Cairo University Hospital, Cairo, Egypt
| | | | - Iliana Bednarova
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany; Institute of Diagnostic Radiology, Department of Biological and Medical Sciences, University of Udine, Udine, Italy
| | - Benjamin Kaltenbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Kim C. Understanding the nuances of microwave ablation for more accurate post-treatment assessment. Future Oncol 2018; 14:1755-1764. [DOI: 10.2217/fon-2017-0736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microwave ablation (MWA) is a relatively new thermal modality for minimally invasive procedures compared with radiofrequency ablation. Although MWA and radiofrequency ablation are thermal modalities, their underlying physics and principles greatly differ. Consequently, it is imperative that clinicians be aware of how these differences impact realized ablation volumes to consistently ensure technical success and better patient outcomes. This paper will review the nuances specific to MWA technology (i.e., tissue properties, perfusion/heat sink effect, ablation assessment, imaging accuracy and tissue contraction) that are often overlooked based on familiarity with conventional thermal modalities to guide more accurate assessment of post-treatment MWA volumes.
Collapse
Affiliation(s)
- Christy Kim
- Angio Dynamics, Inc., 1850 Mt Diablo Blvd, Ste 660, Walnut Creek, CA 94596, USA
| |
Collapse
|
17
|
Deshazer G, Hagmann M, Merck D, Sebek J, Moore KB, Prakash P. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models. Med Phys 2017; 44:4859-4868. [DOI: 10.1002/mp.12359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Garron Deshazer
- Department of Radiation Oncology; Siteman Cancer Center; Barnes-Jewish Hospital & Washington University School of Medicine; 4921 Parkview Pl St. Louis MO 63110 USA
- Department of Diagnostic Imaging; Rhode Island Hospital; 593 Eddy Street Providence RI 02903 USA
| | - Mark Hagmann
- Perseon Medical; 2188 W 2200 S Salt Lake City UT 84119 USA
| | - Derek Merck
- Department of Diagnostic Imaging; Rhode Island Hospital; 593 Eddy Street Providence RI 02903 USA
| | - Jan Sebek
- Department of Electrical and Computer Engineering; Kansas State University; Manhattan KS 66506 USA
| | - Kent B. Moore
- Perseon Medical; 2188 W 2200 S Salt Lake City UT 84119 USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering; Kansas State University; Manhattan KS 66506 USA
| |
Collapse
|
18
|
Saccomandi P, Schena E, Caponero MA, Gassino R, Hernandez J, Perrone G, Vallan A, Diana M, Costamagna G, Marescaux J. Novel carbon fiber probe for temperature monitoring during thermal therapies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:873-876. [PMID: 29060011 DOI: 10.1109/embc.2017.8036963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermal treatments are a valid clinical option in the management of several solid tumors. The difficulties to perform an accurate prediction improve the selectivity of the treatment effects represent the main hurdles in the spread of these techniques. Among other solutions, thermometric techniques are gaining acceptance in monitoring the effects of thermal treatments because they provide a clear end-point to obtain the complete removal of cancer without damaging the surrounding healthy tissue. This paper proposes a custom needle-like probe made of carbon fibers to embed seven fiber Bragg grating (FBG) sensors. This tool aims at a multiple points monitoring the tissue temperature during the thermal procedures, streamlining the FBG sensors insertion within the organ. After the description of the probe manufacturing, we reported the calibration of the seven sensors embedded within the probe, their step response, and the feasibility assessment of the probe for temperature monitoring during laser ablation on animal model (both in vivo and ex vivo). Results show that the proposed probe is easily maneuverable by the clinician, the sensors have a linear response with the temperature and a short step response; moreover, the probe allows measuring the temperature in seven points of the tissue; finally, it can be used during CTand MR-guided procedures without causing any artifact to the images. Thanks to these features the probe may be an useful solution to improve the safety and the outcomes of minimally invasive thermal ablation procedures, so to spread these procedures in the clinical field.
Collapse
|
19
|
Massaroni C, Ciocchetti M, Di Tomaso G, Saccomandi P, Caponero MA, Polimadei A, Formica D, Schena E. Design and preliminary assessment of a smart textile for respiratory monitoring based on an array of Fiber Bragg Gratings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:6054-6057. [PMID: 28269633 DOI: 10.1109/embc.2016.7592109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comfortable and easy to wear smart textiles have gained popularity for continuous respiratory monitoring. Among different emerging technologies, smart textiles based on fiber optic sensors (FOSs) have several advantages, like Magnetic Resonance (MR)-compatibility and good metrological properties. In this paper we report on the development and assessment of an MR-compatible smart textiles based on FOSs for respiratory monitoring. The system consists of six fiber Bragg grating (FBG) sensors glued on the textile to monitor six compartments of the chest wall (i.e., right and left upper thorax, right and left abdominal rib cage, and right and left abdomen). This solution allows monitoring both global respiratory parameters and each compartment volume change. The system converts thoracic movements into strain measured by the FBGs. The positioning of the FBGs was optimized by experiments performed using an optoelectronic system. The feasibility of the smart textile was assessed on 6 healthy volunteers. Experimental data were compared to the ones estimated by an optoelectronic plethysmography used as reference. Promising results were obtained on both breathing period (maximum percentage error is 1.14%), inspiratory and expiratory period, as well as on total volume change (mean percentage difference between the two systems was ~14%). The Bland-Altman analysis shows a satisfactory accuracy for the parameters under investigation. The proposed system is safe and non-invasive, MR-compatible, and allows monitoring compartmental volumes.
Collapse
|
20
|
Liu D, Brace CL. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose. Phys Med Biol 2017; 62:2070-2086. [PMID: 28151729 DOI: 10.1088/1361-6560/aa5de4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue contraction plays an important role during high temperature tumor ablation, particularly during device characterization, treatment planning and imaging follow up. We measured such contraction in 18 ex vivo bovine liver samples during microwave ablation by tracking fiducial motion on CT imaging. Contraction was then described using a thermal dose dependent model and a negative thermal expansion coefficient based on the empirical data. FEM simulations with integrated electromagnetic wave propagation, heat transfer, and structural mechanics were evaluated using temperature-dependent dielectric properties and the negative thermal expansion models. Simulated temperature and displacement curves were then compared with the ex vivo experimental results on different continuous output powers. The optimized thermal dose model indicated over 50% volumetric contraction occurred at the temperature over 102.1 °C. The numerical simulation results on temperature and contraction-induced displacement showed a good agreement with experimental results. At microwave powers of 55 W, the mean errors on temperature between simulation and experimental results were 8.25%, 2.19% and 5.67% at 5 mm, 10 mm and 20 mm radially from the antenna, respectively. The simulated displacements had mean errors of 16.60%, 14.08% and 23.45% at the same radial locations. Compared to the experimental results, the simulations at the other microwave powers had larger errors with 10-40% mean errors at 40 W, and 10-30% mean errors at 25 W. The proposed model is able to predict temperature elevation and simulate tissue deformation during microwave ablation, and therefore may be incorporated into treatment planning and clinical translation from numerical simulations.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, Madison WI 53705, United States of America
| | | |
Collapse
|
21
|
Palumbo G, Iadicicco A, Tosi D, Verze P, Carlomagno N, Tammaro V, Ippolito J, Campopiano S. Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:117003. [PMID: 27846343 DOI: 10.1117/1.jbo.21.11.117003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/19/2016] [Indexed: 05/19/2023]
Abstract
We report on the integration of fiber optic sensors with commercial medical instrumentation for temperature monitoring during radio frequency ablation for tumor treatment. A suitable configuration with five fiber Bragg grating sensors bonded to a bipolar radio frequency (RF) probe has been developed to monitor the area under treatment. A series of experiments were conducted on <italic<ex-vivo</italic< animal kidney and liver and the results confirm that we were able to make a multipoint measurement and to develop a real-time temperature profile of the area, with a temperature resolution of 0.1°C and a spatial resolution of 5 mm during a series of different and consecutive RF discharges.
Collapse
Affiliation(s)
- Giovanna Palumbo
- University of Naples "Parthenope", Centro Direzionale Isola C4, Naples 80143, Italy
| | - Agostino Iadicicco
- University of Naples "Parthenope", Centro Direzionale Isola C4, Naples 80143, Italy
| | - Daniele Tosi
- Nazarbayev University, School of Engineering, 53 Kabanbay Batyz Avenue, Astana 010000, Kazakhstan
| | - Paolo Verze
- Azienda Ospedaliera Universitaria Federico II of Naples, Urology Unit, Via S. Pansini 5, Naples 80131, Italy
| | - Nicola Carlomagno
- Azienda Ospedaliera Universitaria Federico II of Naples, General Surgery and Transplant Unit, Via S. Pansini 5, Naples 80131, Italy
| | - Vincenzo Tammaro
- Azienda Ospedaliera Universitaria Federico II of Naples, General Surgery and Transplant Unit, Via S. Pansini 5, Naples 80131, Italy
| | - Juliet Ippolito
- Azienda Ospedaliera Universitaria Federico II of Naples, Urology Unit, Via S. Pansini 5, Naples 80131, Italy
| | - Stefania Campopiano
- University of Naples "Parthenope", Centro Direzionale Isola C4, Naples 80143, Italy
| |
Collapse
|
22
|
Vogl TJ, Hagar A, Nour-Eldin NEA, Gruber-Rouh T, Eichler K, Ackermann H, Bechstein WO, Naguib NNN. High-frequency versus low-frequency microwave ablation in malignant liver tumours: evaluation of local tumour control and survival. Int J Hyperthermia 2016; 32:868-875. [DOI: 10.1080/02656736.2016.1212107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Thomas J. Vogl
- Institute for Diagnostic and Interventional Radiology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Ahmad Hagar
- Institute for Diagnostic and Interventional Radiology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Nour-Eldin A. Nour-Eldin
- Institute for Diagnostic and Interventional Radiology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Tatjana Gruber-Rouh
- Institute for Diagnostic and Interventional Radiology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Katrin Eichler
- Institute for Diagnostic and Interventional Radiology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Hanns Ackermann
- Department of Biomedical Statistics, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Wolf O. Bechstein
- Department of General Surgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Nagy N. N. Naguib
- Institute for Diagnostic and Interventional Radiology, Frankfurt University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Saccomandi P, Schena E, Diana M, Di Matteo FM, Costamagna G, Marescaux J. Multipoint temperature monitoring in liver undergoing computed tomography-guided radiofrequency ablation with fiber Bragg grating probes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:5174-5179. [PMID: 28269431 DOI: 10.1109/embc.2016.7591893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we investigated the temperature increment experienced by biological tissue during radiofrequency ablation (RFA). The measurements were performed by using two custom-made thermal probes based on fiber optic sensors (fiber Bragg gratings, FBGs). The two probes embed a total of 9 FBGs. Experiments were performed during RFA of an ex vivo healthy porcine liver. The RFA heating module was equipped with 5 thermocouples. Results show that the temperature increment close to the applicator (i.e., 0.6 cm-0.7 cm) reaches the temperature which is set as a target on the RFA module (i.e., approximately 100 °C). The distance from the applicator also has an impact on the dynamics of the heating phenomenon: at short distances the tissue temperature reaches a steady state condition after a few minutes, on the other hand the sensors placed at a distance ≥2cm did not reach the steady-state conditions during the 14-minute procedure. The multipoint temperature monitoring, which uses sensors at several distances from the applicator, can provide useful information regarding the boundary of damaged volume. This approach can be combined with the monitoring temperature system embedded in the heating equipment, to better control the damaged volume, and to improve the treatment outcomes.
Collapse
|
24
|
Napoleoni F, Caponera M, Polimadei A, Tosi D, Saccomandi P, Schena E. Monitoring of thermal treatment by linearly chirped fiber Bragg grating sensors: feasibility assessment during laser ablation on ex vivo liver. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:6493-6496. [PMID: 28269734 DOI: 10.1109/embc.2016.7592216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work a spatially-resolved fiber optic temperature sensor has been characterized in a wide range of gradient applied on its active area (from -35 °C to +35 °C). Preliminary experiments to assess its feasibility for application in laser ablation have been performed. The sensor under test is a linearly chirped fiber Bragg grating (FBG), with 1.5 cm-length of active area. It can be considered as a chain of several FBGs, each able to sense local temperature. The sensor response to the gradient has been analyzed in terms of its spectrum width (full width at half maximum). There is a linear relationship between the full width at half maximum and the gradient, with a sensitivity of 0.0087 nm°C-1. The feasibility test using the linearly chirped FBG during laser ablation showed promising results: it is able to detect both the thermal gradients along is active area and the average temperature increment during the procedure.
Collapse
|
25
|
Saccomandi P, Frauenfelder G, Massaroni C, Caponera MA, Polimadei A, Taffoni F, Di Matteo FM, Costamagna G, Giurazza F, Schena E. Temperature monitoring during radiofrequency ablation of liver: in vivo trials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:344-347. [PMID: 28268347 DOI: 10.1109/embc.2016.7590710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiofrequency ablation (RFA) is a minimally invasive procedure used to treat tumors by means of hyperthermia, mostly through percutaneous approach. The tissue temperature plays a pivotal role in the achievement of the target volume heating, while sparing the surrounding healthy tissue from thermal damage. Several techniques for thermometry during RFA are investigated, most of them based on the use of single-point measurement system (e.g., thermocouples). The measurement of temperature map is crucial for the real-time control and fine adjustment of the treatment settings, to optimize the shape and size of the ablated volume. The recent interest about fiber optic sensors and, among them, fiber Bragg gratings (FBGs) for the monitoring of thermal effects motivated further investigation. In particular, the feature of FBGs to form an array of several elements, thus to be inscribed within the same fiber, allows the use of a single probe for the multi-points monitoring of the tissue temperature during RFA. Hence, the aim of this study is the development and characterization of a needle-like probe embedding an array of three FBGs, which was tested on pig liver during in vivo trials. The needle allows a safe and easy insertion of the fiber optic within the liver. It was inserted by ultrasound guidance into the liver, and monitored the change of tissue temperature during RFA controlled by the roll-off technique. Also the measurement error induced by breathing movements of the liver was assessed (less than 3 °C). Results encourage the use of the probe in clinical settings, as well as the improvement of some features, e.g., a higher number of FBGs for performing quasi-distributed measurement.
Collapse
|
26
|
Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview. SENSORS 2016; 16:s16071144. [PMID: 27455273 PMCID: PMC4970186 DOI: 10.3390/s16071144] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023]
Abstract
During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.
Collapse
|