1
|
Zhang B, Zhou Y, Xu X, Xu G, Wu Z, Wu Q, Zeng Q, Yang J, Lv T, Yang J. RBM39 promotes hepatocarcinogenesis by regulating RFX1's alternative splicing and subsequent activation of integrin signaling pathway. Oncogene 2025; 44:1488-1503. [PMID: 40033026 DOI: 10.1038/s41388-025-03327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Alternative splicing (AS) is crucial for tumor cells as it regulates protein expression and produces various protein isoforms, which can have diverse or even opposing roles in tumor growth and metastasis. Despite its significance, the role of AS and related splicing factors, particularly splicing-related messenger ribonucleoproteins (mRNPs), in hepatocarcinogenesis, is poorly understood. High-throughput transcriptome sequencing of HCC patients revealed that the spliceosome pathway might play a significant role in HCC development. Through the combined analysis of the three gene clusters, the splicing factor RBM39 was identified, which was highly expressed in HCC tumor tissues with prognostic value. Functional studies showed that silencing RBM39 inhibited cell proliferation, migration, and invasion via the integrin pathway. By performing RNA immunoprecipitation sequencing (RIP-seq), we found that RBM39 combined to RFX1 pre-mRNA and regulated alternative splicing of exon 2. Mechanistically, the exon 2 skipping in RFX1, influenced by high RBM39 expression in HCC cells, led to the production of an N-terminal truncated RFX1, which lost the transcriptional repression ability on oncogenic collagen genes. High RBM39 expression enhances the malignant capabilities of HCC cells by regulating the alternative splicing of RFX1 and subsequently activating the FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xi Xu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Gang Xu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiong Wu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiwen Zeng
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Yang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Lv
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yang S, Min X, Hu L, Zheng M, Lu S, Zhao M, Jia S. RFX1 regulates foam cell formation and atherosclerosis by mediating CD36 expression. Int Immunopharmacol 2024; 130:111751. [PMID: 38402833 DOI: 10.1016/j.intimp.2024.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a continuously low-grade inflammatory disease, and monocyte-derived macrophages play a vital role in AS pathogenesis. Regulatory factor X1 (RFX1) has been reported to participate in differentiation of various cells. Our previous report showed that RFX1 expression in CD14+ monocytes from AS patients was decreased and closely related to AS development. Macrophages mostly derive from monocytes and play an important role in AS plaque formation and stability. However, the functions of RFX1 in the formation of macrophage-derived foam cells and consequent AS development are unclear. METHODS We explored the effects of RFX1 on oxidation low lipoprotein (ox-LDL)-stimulated foam cell formation and CD36 expression by increasing or silencing Rfx1 expression in mouse peritoneal macrophages (PMAs). The ApoE-/-Rfx1f/f or ApoE-/-Rfx1f/f Lyz2-Cre mice fed a high-fat diet for 24 weeks were used to further examine the effect of RFX1 on AS pathogenesis. We then performed dual luciferase reporter assays to study the regulation of RFX1 for CD36 transcription. RESULTS Our results demonstrate that RFX1 expression was significantly reduced in ox-LDL induced foam cells and negatively correlated with lipid uptake in macrophages. Besides, Rfx1 deficiency in myeloid cells aggravated atherosclerotic lesions in ApoE-/- mice. Mechanistically, RFX1 inhibited CD36 expression by directly regulating CD36 transcription in macrophages. CONCLUSIONS The reduction of RFX1 expression in macrophages is a vital determinant for foam cell formation and the initiation of AS, proving a potential novel approach for the treatment of AS disease.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Xiaoli Min
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Shuang Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
3
|
Guo L, Liu D. Identification of RFX5 as prognostic biomarker and associated with immune infiltration in stomach adenocarcinoma. Eur J Med Res 2022; 27:164. [PMID: 36045400 PMCID: PMC9429337 DOI: 10.1186/s40001-022-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Regulatory factor X (RFX) gene family is a series of encodes transcription factors with a highly conserved DNA binding domain. RFXs played a vital role in the development and progression of cancer. However, the significance of RFXs in stomach adenocarcinoma (STAD) has not been fully clarified. Methods Online bioinformatics tools such as GSCALite, Kaplan–Meier Plotter, TIMER, LinkedOmics were used to explore the immunomodulatory function and clinical value of RFXs in STAD. Results The mRNA level of RFX1, RFX3, RFX4, RFX5, RFX7 and RFX8 was significantly elevated in STAD tissue versus adjacent normal tissue. We also summarize the copy number variation, single nucleotide variants and drug sensitivity of RFXs in STAD. Prognostic analysis indicated that STAD patients with high RFX5 and RFX7 expression had a better overall survival, first progression, and post-progression survival. Moreover, RFX5 expression was significantly associated with the abundance of immune cells, the expression of immune biomarkers and tumor mutational burden score in STAD. Functional enrichment analysis revealed that RFX5 and its related genes were mainly involved in T cell activation, antigen receptor-mediated signaling pathway, cell adhesion molecules, and Th17 cell differentiation. Validation study further verified the expression and prognosis of RFX5 in STAD. Further univariate and multivariate analyses suggested that pathological stage and RFX5 could be a potential independent prognostic factor for STAD. Conclusions RFX5 was a candidate prognostic biomarker and associated with immune infiltration in STAD. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00794-w.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
|
5
|
Lu L, Li X, Zhong Z, Zhou W, Zhou D, Zhu M, Miao C. KMT5A downregulation participated in High Glucose-mediated EndMT via Upregulation of ENO1 Expression in Diabetic Nephropathy. Int J Biol Sci 2021; 17:4093-4107. [PMID: 34803485 PMCID: PMC8579450 DOI: 10.7150/ijbs.62867] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) has become the common and principal microvascular complication of diabetes that could lead to end-stage renal disease. It was reported endothelial-to-mesenchymal transition (EndMT) in glomeruli plays an important role in DN. Enolase1 (ENO1) and Lysine Methyltransferase 5A (KMT5A) were found to modulate epithelial-to-mesenchymal transition in some situations. In the present study, we speculated KMT5A regulates ENO1 transcript, thus participating in hyperglycemia-induced EndMT in glomeruli of DN. Our study represented vimentin, αSMA and ENO1 expression elevated, and CD31 expression decreased in glomeruli of DN participants and rats. In vitro, high glucose induced EndMT by increase of ENO1 levels. Moreover, high glucose downregulated KMT5A levels and increased regulatory factor X1 (RFX1) levels. KMT5A upregulation or si-RFX1 decreased high glucose-induced ENO1 expression and EndMT. RFX1 overexpression- or sh-KMT5A-induced EndMT was attenuated by si-ENO1. Further, the association between KMT5A and RFX1 was verified. Furthermore, histone H4 lysine20 methylation (the direct target of KMT5A) and RFX1 positioned on ENO1 promoter region. sh-KMT5A enhanced positive action of RFX1 on ENO1 promoter activity. KMT5A reduction and RFX1 upregulation were verified in glomeruli of DN patients and rats. KMT5A associated with RFX1 to modulate ENO1, thus involved in hyperglycemia-mediated EndMT in glomeruli of DN.
Collapse
Affiliation(s)
- Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
6
|
Duan JL, Nie RC, Xiang ZC, Chen JW, Deng MH, Liang H, Wang FW, Luo RZ, Xie D, Cai MY. Prognostic Model for the Risk Stratification of Early and Late Recurrence in Hepatitis B Virus-Related Small Hepatocellular Carcinoma Patients with Global Histone Modifications. J Hepatocell Carcinoma 2021; 8:493-505. [PMID: 34095004 PMCID: PMC8170593 DOI: 10.2147/jhc.s309451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
Background and Aim To assess the profile of global histone modifications in small hepatocellular carcinoma (small HCC) and identify its prognostic value in predicting recurrence. Methods The expression profiles of global histone modifications, including H2AK5AC, H2BK20AC, H3K4me2, H3K9AC, H3K18AC, H4K12AC, and H4R3me2, were evaluated with immunohistochemistry in 335 HBV related small HCC patients. Two histone signature classifiers were then developed using least absolute shrinkage and selection operator Cox regression. A nomogram was built using the classifier and independent risk factors. The performances of the classifier and nomogram were assessed by receiver operating characteristic curves. Results Histone modifications were more pronounced in tumor tissues than in adjacent liver tissues. In tumor tissues, the risk score built based on the seven-histone signature exhibited satisfactory prediction efficiency, with an AUC = 0.71 (0.63–0.79) for 2-year survival in the training cohort. Patients with a high risk score had shorter recurrence-free survival than those with a low risk score (HR: 1.96, 95% CI: 1.24–3.08, p = 0.004; HR: 1.95, 95% CI: 1.12–3.42, p = 0.019; and HR: 1.97, 95% CI: 1.39–2.80, p < 0.001 for the training, validation and total cohorts, respectively). Furthermore, the statistical nomogram built using the histone classifier for early recurrence had a C-index = 0.68. In non-neoplastic liver tissues, the hepatic signature based on H3K4me2 and H4R3me2 was related to late recurrence (HR: 2.00, 95% CI: 1.15–3.48, p = 0.01). Conclusion Global histone modifications in tumor and adjacent liver tissues are novel predictors of early and late recurrence, respectively, in HBV-related small HCC patients.
Collapse
Affiliation(s)
- Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhi-Cheng Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jie-Wei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Rong-Zhen Luo
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
7
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
8
|
Chen H, Ma X, Yang M, Wang M, Li L, Huang T. Transcription Factor Profiling to Predict Recurrence-Free Survival in Breast Cancer: Development and Validation of a Nomogram to Optimize Clinical Management. Front Genet 2020; 11:333. [PMID: 32391054 PMCID: PMC7193038 DOI: 10.3389/fgene.2020.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/20/2020] [Indexed: 11/25/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer-related death in young women. Several prognostic and predictive transcription factor (TF) markers have been reported for BC; however, they are inconsistent due to small datasets, the heterogeneity of BC, and variation in data pre-processing approaches. This study aimed to identify an effective predictive TF signature for the prognosis of patients with BC. We analyzed the TF data of 868 patients with BC in The Cancer Genome Atlas (TCGA) database to investigate TF biomarkers relevant to recurrence-free survival (RFS). These patients were separated into training and internal validation datasets, with GSE2034 and GSE42568 used as external validation sets. A nine-TF signature was identified as crucially related to the RFS of patients with BC by univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and multivariate Cox proportional hazard analysis in the training dataset. Kaplan–Meier analysis revealed that the nine-TF signature could significantly distinguish high- and low-risk patients in both the internal validation dataset and the two external validation sets. Receiver operating characteristic (ROC) analysis further verified that the nine-TF signature showed a good performance for predicting the RFS of patients with BC. In addition, we developed a nomogram based on risk score and lymph node status, with C-index, ROC, and calibration plot analysis, suggesting that it displays good performance and clinical value. In summary, we used integrated bioinformatics approaches to identify an effective predictive nine-TF signature which may be a potential biomarker for BC prognosis.
Collapse
Affiliation(s)
- Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyi Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jia S, Yang S, Du P, Gao K, Cao Y, Yao B, Guo R, Zhao M. Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease. Front Genet 2019; 10:1098. [PMID: 31737059 PMCID: PMC6838212 DOI: 10.3389/fgene.2019.01098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023] Open
Abstract
Monocyte chemoattractant protein 1 (MCP1) affects the chemotaxis of monocytes and is a key chemokine closely related to the development of atherosclerosis (AS). Compared with healthy controls, coronary heart disease (CAD) patients show significantly upregulated plasma concentrations and mRNA expression of MCP1 in CD14+ monocytes. However, the specific regulatory mechanism of MCP1 overexpression in AS is still unclear. Our previous research indicated that there was no significant difference in the H3K4 and H3K27 tri-methylation of the MCP1 promoter in CD14+ monocytes from CAD versus non-CAD patients, but the H3 and H4 acetylation of the MCP1 promoter was increased in CD14+ monocytes from CAD patients. We further found that the H3K9 tri-methylation of the MCP1 promoter in CD14+ monocytes from CAD patients was decreased, but the DNA methylation levels did not differ markedly from those in non-CAD patients. Our previous work showed that the level of regulatory factor X1 (RFX1) was markedly reduced in CD14+ monocytes from CAD patients and played an important role in the progression of AS by regulating epigenetic modification. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contribute to the overexpression of MCP1 in activated monocytes in CAD patients. We found that the enrichment of RFX1, histone deacetylase 1 (HDAC1), and suppressor of variegation 3–9 homolog 1 (SUV39H1) in the MCP1 gene promoter region were decreased in CD14+ monocytes from CAD patients and in healthy CD14+ monocytes treated with low-density lipoprotein (LDL). Chromatin immunoprecipitation (ChIP) assays identified MCP1 as a target gene of RFX1. Overexpression of RFX1 increased the recruitments of HDAC1 and SUV39H1 and inhibited the expression of MCP1 in CD14+ monocytes. In contrast, knockdown of RFX1 in CD14+ monocytes reduced the recruitments of HDAC1 and SUV39H1 in the MCP1 promoter region, thereby facilitating H3 and H4 acetylation and H3K9 tri-methylation in this region. In conclusion, our results indicated that RFX1 expression deficiency in CD14+ monocytes from CAD patients contributed to MCP1 overexpression via a deficiency of recruitments of HDAC1 and SUV39H1 in the MCP1 promoter, which highlighted the vital role of RFX1 in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pei Du
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Gao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Weifang People's Hospital, Weifang, China
| | - Yu Cao
- Dapartment of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Baige Yao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Umeda S, Kanda M, Kodera Y. Recent advances in molecular biomarkers for patients with hepatocellular carcinoma. Expert Rev Mol Diagn 2019; 19:725-738. [PMID: 31248309 DOI: 10.1080/14737159.2019.1638254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide and recurrence rate after curative resection remains high. To improve HCC prognosis, novel sensitive biomarkers and targeted molecular therapies are needed. Accumulation of multiple genetic aberrations caused by pathologically derived liver damage results in HCC carcinogenesis. Elucidating the genes associated with tumorigenesis and progression of HCC may lead to the development of early detection and prognosis markers and to the identification of therapeutic targets. Areas covered: We review recently reported (January 2017-March 2019) HCC-associated molecules, including protein-coding genes, microRNAs, long non-coding RNAs, and methylated gene promoters. Expert opinion: The molecules reviewed have the potential to be clinical biomarkers and therapeutic targets for HCC. The accumulation and understanding of genetic and epigenetic data are essential to improve the management of HCC patients.
Collapse
Affiliation(s)
- Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|