1
|
Patel M, Glover AR, Hugh TJ. Navigating Complexity in Liver Resection: A Narrative Review of Factors Influencing Intraoperative Difficulty. J Laparoendosc Adv Surg Tech A 2025. [PMID: 40323781 DOI: 10.1089/lap.2025.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Background: Liver resection remains the cornerstone for curative management in primary liver malignancies. Liver surgery ranges from simple wedge resections to complex hepatectomies involving vascular or biliary reconstructions. The anatomical complexity of the liver and these varied surgical approaches create challenges in assessing operative difficulty. This literature review explores the key factors influencing operative difficulty in liver resection for primary liver malignancy across surgical techniques. Methods: A broad literature review was conducted to determine the factors that were associated with increased operative difficulty in liver resection using the Embase, PubMed, and Cochrane databases for studies published between 2000 and 2025. Results: This review identifies several patient, tumor, and surgical factors that influence operative difficulty in liver resection. Numerous difficult scoring systems were identified, yet their applicability across different operative approaches remains uncertain. Across open and minimally invasive techniques, tumor size and location are commonly used to determine complexity. However, debate remains regarding the optimal cutoff for tumor diameter. Other identified factors include the extent of resection, patient-specific variables (e.g., cirrhosis, body mass index, previous surgeries), and surgical technique. In addition, liver resection procedures classified based on the 2000 Brisbane terminology have been stratified into three groups of increasing difficulty. Conclusion: The ability to predict operative difficulty is useful for case selection, surgical planning, and risk stratification for meaningful shared decision-making. Future research should focus on refining predictive models by integrating composite measures, including patient-reported outcomes and long-term survival. A unified, validated scoring system applicable across surgical techniques could enhance consistency in clinical practice and research to improve outcomes.
Collapse
Affiliation(s)
- Meet Patel
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Anthony R Glover
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Thomas J Hugh
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Lopez-Lopez V, Morise Z, Albaladejo-González M, Gavara CG, Goh BKP, Koh YX, Paul SJ, Hilal MA, Mishima K, Krürger JAP, Herman P, Cerezuela A, Brusadin R, Kaizu T, Lujan J, Rotellar F, Monden K, Dalmau M, Gotohda N, Kudo M, Kanazawa A, Kato Y, Nitta H, Amano S, Valle RD, Giuffrida M, Ueno M, Otsuka Y, Asano D, Tanabe M, Itano O, Minagawa T, Eshmuminov D, Herrero I, Ramírez P, Ruipérez-Valiente JA, Robles-Campos R, Wakabayashi G. Explainable artificial intelligence prediction-based model in laparoscopic liver surgery for segments 7 and 8: an international multicenter study. Surg Endosc 2024; 38:2411-2422. [PMID: 38315197 PMCID: PMC11078826 DOI: 10.1007/s00464-024-10681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Artificial intelligence (AI) is becoming more useful as a decision-making and outcomes predictor tool. We have developed AI models to predict surgical complexity and the postoperative course in laparoscopic liver surgery for segments 7 and 8. METHODS We included patients with lesions located in segments 7 and 8 operated by minimally invasive liver surgery from an international multi-institutional database. We have employed AI models to predict surgical complexity and postoperative outcomes. Furthermore, we have applied SHapley Additive exPlanations (SHAP) to make the AI models interpretable. Finally, we analyzed the surgeries not converted to open versus those converted to open. RESULTS Overall, 585 patients and 22 variables were included. Multi-layer Perceptron (MLP) showed the highest performance for predicting surgery complexity and Random Forest (RF) for predicting postoperative outcomes. SHAP detected that MLP and RF gave the highest relevance to the variables "resection type" and "largest tumor size" for predicting surgery complexity and postoperative outcomes. In addition, we explored between surgeries converted to open and non-converted, finding statistically significant differences in the variables "tumor location," "blood loss," "complications," and "operation time." CONCLUSION We have observed how the application of SHAP allows us to understand the predictions of AI models in surgical complexity and the postoperative outcomes of laparoscopic liver surgery in segments 7 and 8.
Collapse
Affiliation(s)
- Victor Lopez-Lopez
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, El Palmar, Murcia, Spain
| | - Zeniche Morise
- Department of Surgery, Fujita Health University School of Medicine Okazaki Medical Center, Okazaki, Aichi, Japan
| | | | - Concepción Gomez Gavara
- Department of HPB Surgery and Transplants, Vall d'Hebron University Hospital, Barcelona Autonomic University, Barcelona, Spain
| | - Brian K P Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- Surgery Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Ye Xin Koh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
- Surgery Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sijberden Jasper Paul
- Department of Surgery, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Mohammed Abu Hilal
- Department of Surgery, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kohei Mishima
- Department of Surgery, Ageo Central General Hospital, Ageo, Japan
| | - Jaime Arthur Pirola Krürger
- Serviço de Cirurgia do Fígado, Divisão de Cirurgia do Aparelho Digestivo, Departamento de Gastroenterologia, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Herman
- Serviço de Cirurgia do Fígado, Divisão de Cirurgia do Aparelho Digestivo, Departamento de Gastroenterologia, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Alvaro Cerezuela
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, El Palmar, Murcia, Spain
| | - Roberto Brusadin
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, El Palmar, Murcia, Spain
| | - Takashi Kaizu
- Department of General, Pediatric and Hepatobiliary-Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Juan Lujan
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, El Palmar, Murcia, Spain
- Department of General Surgery, School of Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Fernando Rotellar
- Department of General Surgery, School of Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Kazuteru Monden
- Department of Surgery, Fukuyama City Hospital, Hiroshima, Japan
| | - Mar Dalmau
- Department of HPB Surgery and Transplants, Vall d'Hebron University Hospital, Barcelona Autonomic University, Barcelona, Spain
| | - Naoto Gotohda
- Department of Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Kudo
- Department of Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akishige Kanazawa
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Yutaro Kato
- Department of Surgery, Fujita Health University, Toyoake, Japan
| | - Hiroyuki Nitta
- Department of Surgery, Iwate Medical University, Iwate, Japan
| | - Satoshi Amano
- Department of Surgery, Iwate Medical University, Iwate, Japan
| | | | - Mario Giuffrida
- General Surgery Unit, Parma University Hospital, Parma, Italy
| | - Masaki Ueno
- Second Department of Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, Japan
| | | | - Daisuke Asano
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Itano
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Takuya Minagawa
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Dilmurodjon Eshmuminov
- Department of Surgery and Transplantation, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Irene Herrero
- Department of Surgery, Getafe University Hospital, Madrid, Spain
| | - Pablo Ramírez
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, El Palmar, Murcia, Spain
| | | | - Ricardo Robles-Campos
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, El Palmar, Murcia, Spain
| | - Go Wakabayashi
- Department of Surgery, Ageo Central General Hospital, Ageo, Japan
| |
Collapse
|