1
|
Onida S, Lees HJ, Bergner R, Shalhoub J, Holmes E, Davies AH. 1H Nuclear Magnetic Resonance Spectroscopy Reveals Changes in Metabolic Phenotype Associated with Disease Stage in Patients with Chronic Venous Disease. Eur J Vasc Endovasc Surg 2025; 69:325-333. [PMID: 39303804 DOI: 10.1016/j.ejvs.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Chronic venous disease (CVD) is a condition presenting a great burden to patients and society, with poorly characterised pathophysiology. Metabolic phenotyping can elucidate mechanisms of disease and identify candidate biomarkers. The aim of this study was to determine differences in the metabolic signature between symptomatic patients with CVD and asymptomatic volunteers using proton nuclear magnetic resonance spectroscopy (1H-NMR). METHODS This was a prospective case control study of consecutive patients with symptomatic CVD and asymptomatic volunteers recruited from a single centre. Participants underwent clinical assessment, venous duplex ultrasound, and blood and urine sampling. Disease stage was defined according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) classification. 1H-NMR experiments were performed, with data analysed via multivariable statistical techniques. RESULTS A total of 622 participants were recruited, including 517 symptomatic patients with CVD (telangiectasia [C1] 0.6%, varicose veins [C2] 48.5%, swelling [C3] 12.0%, skin changes [C4] 27.7%, healed or active ulceration [C5/6] 11.2%) and 105 asymptomatic participants (no disease [C0] 69.5%, telangiectasia [C1] 29.6%). Multivariable analysis revealed differences between the metabolic profile of the symptomatic CVD and asymptomatic groups, and between CEAP clinical classes in the CVD group. Serum aromatic amino acids positively correlated with increasing CEAP clinical class (p < .001). Urinary formate, creatinine, glycine, citrate, succinate, pyruvate, and 2-hydroxyisobutyrate negatively correlated with increasing CEAP clinical class (p < .001). These metabolites are involved in the tricarboxylic acid cycle, hypoxia inducible factor pathway, and one carbon metabolism. CONCLUSION Untargeted biofluid analysis via 1H-NMR has detected metabolites associated with the presence and severity of CVD, highlighting biological pathways of relevance and providing candidate biomarkers to explore in future research.
Collapse
Affiliation(s)
- Sarah Onida
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Hannah J Lees
- Section of Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK; Donald B. and Catherine C. Marron Cancer Metabolism Centre, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Richmond Bergner
- Section of Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Elaine Holmes
- Section of Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK; Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
2
|
Diaz JA, Gianesini S, Khalil RA. Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease. INT ANGIOL 2024; 43:563-590. [PMID: 39873224 PMCID: PMC11839207 DOI: 10.23736/s0392-9590.24.05339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology. Genetic aberrations accentuated by environmental factors, behavioral tendencies, and hormonal disturbances promote venous reflux, valve incompetence, and venous blood stasis. Increased venous hydrostatic pressure and changes in shear-stress cause glycocalyx injury, endothelial dysfunction, secretion of adhesion molecules, leukocyte recruitment/activation, and release of cytokines, chemokines, and hypoxia-inducible factor, causing smooth muscle cell switch from contractile to synthetic proliferative phenotype, imbalance in matrix metalloproteinases (MMPs), degradation of collagen and elastin, and venous tissue remodeling, leading to venous dilation and varicose veins. In the advanced stages of CVD, leukocyte infiltration of the vein wall causes progressive inflammation, fibrosis, disruption of junctional proteins, accumulation of tissue metabolites and reactive oxygen and nitrogen species, and iron deposition, leading to skin changes and venous leg ulcer (VLU). CVD management includes compression stockings, venotonics, and surgical intervention. In addition to its antithrombotic and fibrinolytic properties, literature suggests sulodexide benefits in reducing inflammation, promoting VLU healing, improving endothelial function, exhibiting venotonic properties, and inhibiting MMP-9. Understanding the role of glycocalyx, endothelial dysfunction, and vascular remodeling should help delineate the underlying mechanisms and develop improved biomarkers and targeted therapy for CVD and VLU.
Collapse
Affiliation(s)
- Jose A. Diaz
- Division of Surgical Research, Light Surgical Research and Training Laboratory, Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sergio Gianesini
- Vascular Diseases Center, Translational Surgery Unit, University of Ferrara, Ferrara, Italy, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Performance of circulating methylated Septin9 gene DNA in diagnosis and recurrence monitoring of colorectal cancer in Western China. Clin Chim Acta 2022; 537:118-126. [DOI: 10.1016/j.cca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
|
4
|
Raffetto JD, Khalil RA. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. VESSEL PLUS 2021; 5. [PMID: 34250453 DOI: 10.20517/2574-1209.2021.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic venous disease (CVD) is a common venous disorder of the lower extremities. CVD can be manifested as varicose veins (VVs), with dilated and tortuous veins, dysfunctional valves and venous reflux. If not adequately treated, VVs could progress to chronic venous insufficiency (CVI) and lead to venous leg ulcer (VLU). Predisposing familial and genetic factors have been implicated in CVD. Additional environmental, behavioral and dietary factors including sedentary lifestyle and obesity may also contribute to CVD. Alterations in the mRNA expression, protein levels and proteolytic activity of matrix metalloproteinases (MMPs) have been detected in VVs and VLU. MMP expression/activity can be modulated by venous hydrostatic pressure, hypoxia, tissue metabolites, and inflammation. MMPs in turn increase proteolysis of different protein substrates in the extracellular matrix particularly collagen and elastin, leading to weakening of the vein wall. MMPs could also promote venous dilation by increasing the release of endothelium-derived vasodilators and activating potassium channels, leading to smooth muscle hyperpolarization and relaxation. Depending on VVs severity, management usually includes compression stockings, sclerotherapy and surgical removal. Venotonics have also been promoted to decrease the progression of VVs. Sulodexide has also shown benefits in VLU and CVI, and recent data suggest that it could improve venous smooth muscle contraction. Other lines of treatment including induction of endogenous tissue inhibitors of metalloproteinases (TIMPs) and administration of exogenous synthetic inhibitors of MMPs are being explored, and could provide alternative strategies in the treatment of CVD.
Collapse
Affiliation(s)
- Joseph D Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Onida S, Tan MKH, Kafeza M, Bergner RT, Shalhoub J, Holmes E, Davies AH. Metabolic Phenotyping in Venous Disease: The Need for Standardization. J Proteome Res 2019; 18:3809-3820. [PMID: 31617359 DOI: 10.1021/acs.jproteome.9b00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Venous thromboembolism (VTE), chronic venous disease (CVD), and venous leg ulceration (VLU) are clinical manifestations of a poorly functioning venous system. Though common, much is unknown of the pathophysiology and progression of these conditions. Metabolic phenotyping has been employed to explore mechanistic pathways involved in venous disease. A systematic literature review was performed: full text, primary research articles on the applications of nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) in human participants and animals were included for qualitative synthesis. Seventeen studies applying metabolic phenotyping to venous disease were identified: six on CVD, two on VLU, and nine on VTE; both animal (n = 6) and human (n = 10) experimental designs were reported, with one study including both. NMR, MS, and MS imaging were employed to characterize serum, plasma, urine, wound fluid, and tissue. Metabolites found to be upregulated in CVD included lipids, branched chain amino acids (BCAA), glutamate, taurine, lactate, and myo-inositol identified in vein tissue. Upregulated metabolites in VLU included lactate, BCAA, lysine, 3-hydroxybutyrate, and glutamate identified in wound fluid and ulcer biopsies. VTE cases were associated with reduced carnitine levels, upregulated aromatic amino acids, 3-hydroxybutyrate, BCAA, and lipids in plasma, serum, thrombus, and vein wall; kynurenine and tricarboxylic acid pathway dysfunction were reported. Future research should focus on targeted studies with internal and external validation.
Collapse
Affiliation(s)
- Sarah Onida
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Matthew K H Tan
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Marina Kafeza
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Richmond T Bergner
- Section of Computational and Systems Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, Prince Consort Road , Kensington, London SW7 2BB , U.K
| | - Joseph Shalhoub
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Elaine Holmes
- Section of Computational and Systems Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, Prince Consort Road , Kensington, London SW7 2BB , U.K.,Health Futures Institute , Murdoch University , Discovery Way , Perth , WA 6150 , Australia
| | - Alun H Davies
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| |
Collapse
|
6
|
Sung Y, Spagou K, Kafeza M, Kyriakides M, Dharmarajah B, Shalhoub J, Diaz JA, Wakefield TW, Holmes E, Davies AH. Deep Vein Thrombosis Exhibits Characteristic Serum and Vein Wall Metabolic Phenotypes in the Inferior Vena Cava Ligation Mouse Model. Eur J Vasc Endovasc Surg 2018. [DOI: 10.1016/j.ejvs.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
|
8
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
9
|
A comprehensive characterisation of the metabolic profile of varicose veins; implications in elaborating plausible cellular pathways for disease pathogenesis. Sci Rep 2017; 7:2989. [PMID: 28592827 PMCID: PMC5462754 DOI: 10.1038/s41598-017-02529-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/12/2017] [Indexed: 01/27/2023] Open
Abstract
Metabolic phenotypes reflect both the genetic and environmental factors which contribute to the development of varicose veins (VV). This study utilises analytical techniques to provide a comprehensive metabolic picture of VV disease, with the aim of identifying putative cellular pathways of disease pathogenesis. VV (n = 80) and non-VV (n = 35) aqueous and lipid metabolite extracts were analysed using 600 MHz 1H Nuclear Magnetic Resonance spectroscopy and Ultra-Performance Liquid Chromatography Mass Spectrometry. A subset of tissue samples (8 subjects and 8 controls) were analysed for microRNA expression and the data analysed with mirBase (www.mirbase.org). Using Multivariate statistical analysis, Ingenuity pathway analysis software, DIANALAB database and published literature, the association of significant metabolites with relevant cellular pathways were understood. Higher concentrations of glutamate, taurine, myo-inositol, creatine and inosine were present in aqueous extracts and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in lipid extracts in the VV group compared with non-VV group. Out of 7 differentially expressed miRNAs, spearman correlation testing highlighted correlation of hsa-miR-642a-3p, hsa-miR-4459 and hsa-miR-135a-3p expression with inosine in the vein tissue, while miR-216a-5p, conversely, was correlated with phosphatidylcholine and phosphatidylethanolamine. Pathway analysis revealed an association of phosphatidylcholine and sphingomyelin with inflammation and myo-inositol with cellular proliferation.
Collapse
|
10
|
Anwar MA, Vorkas PA, Li J, Adesina-Georgiadis KN, Reslan OM, Raffetto JD, Want EJ, Khalil RA, Holmes E, Davies AH. Prolonged Mechanical Circumferential Stretch Induces Metabolic Changes in Rat Inferior Vena Cava. Eur J Vasc Endovasc Surg 2016; 52:544-552. [PMID: 27523725 DOI: 10.1016/j.ejvs.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE/BACKGROUND Circumferential stretch on the vein wall has been suggested as a potential etiological factor in the development of varicose veins. However, the influence of vein wall stretch on vein metabolism has not yet been explored. The aim of this study was to investigate the effect of short and prolonged mechanical stretch on vein wall metabolism. METHODS Circular segments of inferior vena cava from male Sprague-Dawley rats were exposed to normal 0.5-g (nonstretched) or high 2-g (stretched) tension for short (4 h) or prolonged (18 h) duration (five vein segments per group). Contraction response to phenylephrine (10-5 M) and KCl (96 mM) was elicited to observe the effect of circumferential stretch on vein function. The polar and organic metabolites in vein tissue were extracted using a bilayer extraction method. Aqueous and organic extracts were analyzed using nuclear magnetic resonance spectroscopy and ultra performance liquid chromatography coupled to mass spectrometry, respectively. Data acquired from both analytical platforms were analyzed using mathematical modeling. RESULTS Increased concentrations of valine (p = .02) and choline (p = .03) metabolites and triglyceride moieties (p = .03) were observed in veins stretched for 18 h compared with the nonstretched/18 h group. DISCUSSION Increased concentrations of branched chain amino acid valine and cell membrane constituent choline indicate increased muscle breakdown and increased metabolism of membrane phospholipids under stretch in an ex-vivo model. Increased intensities of triglyceride moieties in stretched vein segments for 18 h suggest that high pressure may induce an inflammatory response. CONCLUSION This study has shown that prolonged mechanical circumferential stretch (18 h) alters the metabolic profile of rat inferior vena cava.
Collapse
Affiliation(s)
- M A Anwar
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College, London, UK.
| | - P A Vorkas
- Section of Biomolecular Medicine, Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - J Li
- Section of Biomolecular Medicine, Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - K N Adesina-Georgiadis
- Section of Biomolecular Medicine, Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - O M Reslan
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - J D Raffetto
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA, USA; Vascular Surgery Division, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - E J Want
- Section of Biomolecular Medicine, Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - R A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - E Holmes
- Section of Biomolecular Medicine, Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - A H Davies
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College, London, UK
| |
Collapse
|
11
|
Vorkas PA, Shalhoub J, Lewis MR, Spagou K, Want EJ, Nicholson JK, Davies AH, Holmes E. Metabolic Phenotypes of Carotid Atherosclerotic Plaques Relate to Stroke Risk: An Exploratory Study. Eur J Vasc Endovasc Surg 2016; 52:5-10. [PMID: 27231199 DOI: 10.1016/j.ejvs.2016.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Stroke is a major cause of death and disability. That three-quarters of stroke patients will never have previously manifested cerebrovascular symptoms demonstrates the unmet clinical need for new biomarkers able to stratify patient risk and elucidation of the biological dysregulations. In this study, the utility of comprehensive metabolic phenotyping is assessed to provide candidate biomarkers that relate to stroke risk in stenosing carotid plaque tissue samples. METHOD Carotid plaque tissue samples were obtained from patients with cerebrovascular symptoms of carotid origin (n = 5), and from asymptomatic patients (n = 5). Two adjacent biological replicates were obtained from each tissue. Organic and aqueous metabolite extracts were obtained separately and analysed using two ultra performance liquid chromatography coupled to mass spectrometry metabolic profiling methods. Multivariate and univariate tools were used for statistical analysis. RESULTS The two study groups demonstrated distinct plaque phenotypes using multivariate data analysis. Univariate statistics also revealed metabolites that differentiated the two groups with a strong statistical significance (p = 10(-4)-10(-5)). Specifically, metabolites related to the eicosanoid pathway (arachidonic acid and arachidonic acid precursors), and three acylcarnitine species (butyrylcarnitine, hexanoylcarnitine, and palmitoylcarnitine), intermediates of the β-oxidation, were detected in higher intensities in symptomatic patients. However, metabolites implicated in the process of cell death, a process known to be upregulated in the formation of the vulnerable plaque, were unaffected. CONCLUSIONS Discrimination between symptomatic and asymptomatic carotid plaque tissue is demonstrated for the first time using metabolic profiling technologies. Two biological pathways (eicosanoid and β-oxidation) were implicated in differentiating symptomatic from asymptomatic patients and will be further investigated. These results indicate that metabolic phenotyping should be further explored to investigate the chemistry of the unstable plaque, in the pursuit of candidate biomarkers for risk-stratification and targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- P A Vorkas
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - J Shalhoub
- Academic Section of Vascular Surgery, Division of Surgery, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - M R Lewis
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - K Spagou
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - E J Want
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - J K Nicholson
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - A H Davies
- Academic Section of Vascular Surgery, Division of Surgery, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - E Holmes
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK.
| |
Collapse
|
12
|
Vorkas PA, Isaac G, Holmgren A, Want EJ, Shockcor JP, Holmes E, Henein MY. Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease: An exploratory lipidomic study. Int J Cardiol 2015; 197:192-9. [DOI: 10.1016/j.ijcard.2015.06.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022]
|
13
|
Anwar MA, Vorkas PA, Li JV, Shalhoub J, Want EJ, Davies AH, Holmes E. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling. Analyst 2015; 140:7586-97. [DOI: 10.1039/c5an01041a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue extraction optimization for untargeted metabolic profiling.
Collapse
Affiliation(s)
- Muzaffar A. Anwar
- Academic Section of Vascular Surgery
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
- London
| | - Panagiotis A. Vorkas
- Section of Biomolecular Medicine
- Division of Computational and Systems Biology
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
| | - Jia V. Li
- Section of Biomolecular Medicine
- Division of Computational and Systems Biology
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
| | - Joseph Shalhoub
- Academic Section of Vascular Surgery
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
- London
| | - Elizabeth J. Want
- Section of Biomolecular Medicine
- Division of Computational and Systems Biology
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
| | - Alun H. Davies
- Academic Section of Vascular Surgery
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
- London
| | - Elaine Holmes
- Section of Biomolecular Medicine
- Division of Computational and Systems Biology
- Department of Surgery and Cancer
- Faculty of Medicine
- Imperial College London
| |
Collapse
|
14
|
O'Donnell TF, Passman MA, Marston WA, Ennis WJ, Dalsing M, Kistner RL, Lurie F, Henke PK, Gloviczki ML, Eklöf BG, Stoughton J, Raju S, Shortell CK, Raffetto JD, Partsch H, Pounds LC, Cummings ME, Gillespie DL, McLafferty RB, Murad MH, Wakefield TW, Gloviczki P. Management of venous leg ulcers: clinical practice guidelines of the Society for Vascular Surgery ® and the American Venous Forum. J Vasc Surg 2014; 60:3S-59S. [PMID: 24974070 DOI: 10.1016/j.jvs.2014.04.049] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Mannello F, Ligi D, Canale M, Raffetto JD. Omics profiles in chronic venous ulcer wound fluid: innovative applications for translational medicine. Expert Rev Mol Diagn 2014; 14:737-62. [DOI: 10.1586/14737159.2014.927312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
The pathophysiology, diagnosis and treatment of the acute coagulopathy of trauma and shock: a literature review. Eur J Trauma Emerg Surg 2013; 41:259-72. [DOI: 10.1007/s00068-013-0360-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
|