1
|
Prasad K, Bhanumathy KK. AGE-RAGE Axis in the Pathophysiology of Chronic Lower Limb Ischemia and a Novel Strategy for Its Treatment. Int J Angiol 2020; 29:156-167. [PMID: 33041612 DOI: 10.1055/s-0040-1710045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the role of advanced glycation end products (AGEs) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting in CLLI. Serum and tissue levels of AGE, and expression of RAGE are elevated, and the serum levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction increase the generation of various atherogenic factors including reactive oxygen species, nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE, suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by upregulating sRAGE expression, and exogenous administration of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the development of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for prevention, regression, and slowing of progression of CLLI.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front Cardiovasc Med 2020; 7:37. [PMID: 32211423 PMCID: PMC7076074 DOI: 10.3389/fcvm.2020.00037] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Gautham Yepuri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa S. Ramirez
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Sergey Reverdatto
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Yamagishi SI, Matsui T. Role of Ligands of Receptor for Advanced Glycation End Products (RAGE) in Peripheral Artery Disease. Rejuvenation Res 2018; 21:456-463. [PMID: 29644926 DOI: 10.1089/rej.2017.2025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerotic cardiovascular disease, including peripheral artery disease (PAD), is more common and severe in diabetic patients compared with nondiabetic individuals. Indeed, diabetes is associated with the increased risk of limb amputation and all-cause mortality in patients with symptomatic PAD. Proteins and lipids are nonenzymatically modified by sugars, resulting in the formation and accumulation of advanced glycation end products (AGEs), whose process is accelerated under diabetic conditions, especially patients with a long duration of diabetes. Accumulating evidence shows that nonenzymatic modification by sugars alters the structural integrity of collagens and lipoproteins in large vessels, thereby being involved in vascular stiffness and atherosclerotic plaque instability. Furthermore, engagement of receptor for AGEs (RAGE) with its ligands, such as AGEs, high mobility group box 1, and S100A proteins evokes inflammatory and thrombotic reactions, thus playing a central role in the development and progression of atherosclerotic cardiovascular disease. In this article, we review the pathophysiological role of RAGE ligands in PAD and discuss the clinical utility of measurement of plasma, serum, or tissue RAGE ligands for assessment of the severity and prognosis of PAD. This review suggests that RAGE ligands may be a novel biomarker and also a therapeutic target of PAD, especially in patients with diabetes.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine , Kurume, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine , Kurume, Japan
| |
Collapse
|
4
|
de Vos LC, Lefrandt JD, Dullaart RP, Zeebregts CJ, Smit AJ. Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis 2016; 254:291-299. [DOI: 10.1016/j.atherosclerosis.2016.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
|