1
|
Lindeman JH, Wågsäter D, Kals J. Metabolic Aspects in Vascular Practice. Eur J Vasc Endovasc Surg 2025; 69:347-349. [PMID: 39454941 DOI: 10.1016/j.ejvs.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Jan H Lindeman
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jaak Kals
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Schoenherr L, Heidler J, Kluckner M, Lobenwein D, Pesta D, Frese JP, Wipper SH, Gratl A. A Randomized Control Trial Investigating the Effect of Different Treatment Strategies on Mitochondrial Function in Peripheral Arterial Disease: A Study Protocol. J Surg Res 2025; 307:78-85. [PMID: 39987612 DOI: 10.1016/j.jss.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Peripheral arterial disease encompasses different clinical symptoms, depending on the severity of the disease. In early stages, a walking-induced pain, known as intermittent claudication, is the leading clinical symptom. Repeating cycles of ischemia and reperfusion induce a typical myopathy, with mitochondria playing the key role within this pathophysiological condition. The aim of this study is to further evaluate the effects of different treatment strategies on mitochondrial function and overall cardiovascular outcomes within a randomized controlled trial. After inclusion, patients will be randomized into different study groups. Study group 1 will receive conservative treatment, while study group 2 will receive revascularization of underlying atherosclerotic lesions. Additionally, a healthy control group will be included. Muscle biopsies will be obtained from ischemic and nonischemic muscle regions, being defined by the anatomic localization of the atherosclerotic lesion, before initiation of treatment as well as after a time interval of 12 wk. Mitochondrial function and content will be evaluated using high-resolution respirometry and citrate synthase activity measurements. Cardiovascular outcomes will be determined by established protocols. This study is registered on ClinicalTrials.gov-NCT05644158. This study aims to gain further insights into the exact pathophysiological mechanism underlying mitochondrial dysfunction in peripheral arterial disease. The potential effects of mitochondrial regeneration within ischemic muscle regions following a conservative treatment approach will be compared to those reported after revascularization procedures. Additionally, correlation with cardiovascular outcome parameters and in vivo methods will provide a comprehensive approach to this research question.
Collapse
Affiliation(s)
- Laura Schoenherr
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Juliana Heidler
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michaela Kluckner
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lobenwein
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jan Paul Frese
- Department of Vascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Helena Wipper
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Gratl
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Palzkill VR, Tan J, Moparthy D, Tice AL, Ferreira LF, Ryan TE. A 6-Minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. JACC Basic Transl Sci 2025; 10:88-103. [PMID: 39906594 PMCID: PMC11788496 DOI: 10.1016/j.jacbts.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 02/06/2025]
Abstract
In this study, we present a novel 6-minute limb function test that allows for the congruent assessment of muscular performance and hemodynamics in preclinical models of peripheral artery disease. Using several experimental conditions, the results demonstrate the superior efficacy of the 6-minute limb function test to detect differences in the response to hindlimb ischemia across several interventions, including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect interventional differences, thus allowing for more rigorous assessment of preclinical therapies before clinical translation.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Divyansha Moparthy
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Abigail L. Tice
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, The University of Florida, Gainesville, Florida, USA
- The Myology Institute, The University of Florida, Gainesville, Florida, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, The University of Florida, Gainesville, Florida, USA
- The Myology Institute, The University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Prog Cardiovasc Dis 2024; 85:63-73. [PMID: 38061613 DOI: 10.1016/j.pcad.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Although peripheral artery disease (PAD) primarily affects large arteries outside the brain, PAD is also associated with elevated cerebral vulnerabilities, including greater risks for brain injury (such as stroke), cognitive decline and dementia. In the present review, we aim to evaluate recent literature and extract information on potential mechanisms linking PAD and consequences on the brain. Furthermore, we suggest novel therapeutic avenues to mitigate cognitive decline and reduce risk of brain injury in patients with PAD. Various interventions, notably exercise, directly or indirectly improve systemic blood flow and oxygen supply and are effective strategies in patients with PAD or cognitive decline. Moreover, triggering protective cellular and systemic mechanisms by modulating inspired oxygen concentrations are emerging as potential novel treatment strategies. While several genetic and pharmacological approaches to modulate adaptations to hypoxia showed promising results in preclinical models of PAD, no clear benefits have yet been clinically demonstrated. We argue that genetic/pharmacological regulation of the involved adaptive systems remains challenging but that therapeutic variation of inspired oxygen levels (e.g., hypoxia conditioning) are promising future interventions to mitigate associated cognitive decline in patients with PAD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marco Fresa
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stefano Lanzi
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Lucia Mazzolai
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Maxime Pellegrin
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
5
|
Speichinger F, Gratl A, Raude B, Schawe L, Carstens J, Hering NA, Greiner A, Pesta D, Frese JP. Mitochondrial respiration in peripheral arterial disease depends on stage severity. J Cell Mol Med 2024; 28:e18126. [PMID: 38534092 PMCID: PMC10967142 DOI: 10.1111/jcmm.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024] Open
Abstract
Peripheral arterial disease (PAD) is an increasing cause of morbidity and its severity is graded based on clinical manifestation. To investigate the influence of the different stages on myopathy of ischemic muscle we analysed severity-dependent effects of mitochondrial respiration in PAD. Eighteen patients with severe PAD, defined as chronic limb-threatening ischemia, 47 patients with intermittent claudication (IC) and 22 non-ischemic controls were analysed. High-resolution respirometry (HRR) was performed on muscle biopsies of gastrocnemius and vastus lateralis muscle of patients in different PAD stages to investigate different respiratory states. Results from HRR are given as median and interquartile range and were normalized to citrate synthase activity (CSA), a marker for mitochondrial content. In order to account for inter-individual differences between patients and controls, we calculated the ratio of O₂-flux in gastrocnemius muscle over vastus muscle ('GV ratio'). CSA of the gastrocnemius muscle as a proxy for mitochondrial content was significantly lower in critical ischemia compared to controls. Mitochondrial respiration normalized to CSA was higher in IC compared to controls. Likewise, the GV ratio was significantly higher in IC compared to control. Mitochondrial respiration and CSA of PAD patients showed stage-dependent modifications with greater changes in the mild PAD stage group (IC).
Collapse
Affiliation(s)
- Fiona Speichinger
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
- Department of General and Visceral SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| | - Alexandra Gratl
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
- Department of Vascular SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Ben Raude
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| | - Larissa Schawe
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| | - Jan Carstens
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| | - Nina A. Hering
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
- Department of General and Visceral SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| | - Andreas Greiner
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| | - Dominik Pesta
- Institute of Aerospace MedicineGerman Aerospace Center (DLR)CologneGermany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP)University Hospital CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)CologneGermany
| | - Jan Paul Frese
- Department of Vascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
6
|
Palzkill VR, Tan J, Tice AL, Ferriera LF, Ryan TE. A 6-minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586197. [PMID: 38585832 PMCID: PMC10996543 DOI: 10.1101/2024.03.21.586197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferriera
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Ismaeel A, Fletcher E, Miserlis D, Wechsler M, Papoutsi E, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Skeletal muscle MiR-210 expression is associated with mitochondrial function in peripheral artery disease patients. Transl Res 2022; 246:66-77. [PMID: 35288364 PMCID: PMC9197925 DOI: 10.1016/j.trsl.2022.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that circulating microRNA (miR)-210 levels are elevated in peripheral artery disease (PAD) patients. MiR-210 is known to be a negative regulator of mitochondrial respiration; however, the relationship between miR-210 and mitochondrial function has yet to be studied in PAD. We aimed to compare skeletal muscle miR-210 expression of PAD patients to non-PAD controls (CON) and to examine the relationship between miR-210 expression and mitochondrial function. Skeletal muscle biopsies from CON (n = 20), intermittent claudication (IC) patients (n = 20), and critical limb ischemia (CLI) patients (n = 20) were analyzed by high-resolution respirometry to measure mitochondrial respiration of permeabilized fibers. Samples were also analyzed for miR-210 expression by real-time PCR. MiR-210 expression was significantly elevated in IC and CLI muscle compared to CON (P = 0.008 and P < 0.001, respectively). Mitochondrial respiration of electron transport chain (ETC) Complexes II (P = 0.001) and IV (P < 0.001) were significantly reduced in IC patients. Further, CLI patients demonstrated significant reductions in respiration during Complexes I (state 2: P = 0.04, state 3: P = 0.003), combined I and II (P < 0.001), II (P < 0.001), and IV (P < 0.001). The expression of the miR-210 targets, cytochrome c oxidase assembly factor heme A: farnesyltransferase (COX10), and iron-sulfur cluster assembly enzyme (ISCU) were down-regulated in PAD muscle. MiR-210 may play a role in the cellular adaptation to hypoxia and may be involved in the metabolic myopathy associated with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, Texas
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Marissa Wechsler
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | | | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
8
|
Gratl A, Lobenwein D, Gummerer M, Wipper S. Die Etablierung eines neuen Forschungskonzepts an einem universitären Standort. GEFÄSSCHIRURGIE 2022; 27:239-245. [PMID: 35702688 PMCID: PMC9185131 DOI: 10.1007/s00772-022-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Neben der klinischen Tätigkeit haben an einem universitären Standort Forschung und Lehre einen großen Stellenwert. Durch die Etablierung eines neuen Forschungslabors an der Universitätsklinik für Gefäßchirurgie der Medizinischen Universität Innsbruck wurden die infrastrukturellen Voraussetzungen zur Gestaltung eines neuen Forschungsschwerpunkts geschaffen. Die Kooperation mit nationalen und internationalen Partnern war für diesen Prozess essenziell. Nicht nur in der Planung und Ausstattung der Räumlichkeiten, sondern auch in der Entwicklung von Studienprotokollen und zur kritischen Diskussion von Ergebnissen ist der Aufbau eines Netzwerkes von großer Bedeutung. Durch die Etablierung der experimentellen Gefäßchirurgie Innsbruck ist nun die Realisierung von Projekten der Grundlagenforschung und der translationalen Forschung an diesem universitären Standort möglich. Zudem spielt die Lehrforschung eine immer größere Rolle, insbesondere um die Ausbildungsstruktur möglichst praxisnah zu gestalten, Nachwuchs anzuwerben und die immer komplexer werdenden Techniken auch praxisnah zu vermitteln.
Collapse
Affiliation(s)
- Alexandra Gratl
- Univ.-Klinik für Gefäßchirurgie, Medizinische Universität Innsbruck, Anichstraße 35, 6020 Innsbruck, Österreich
| | - Daniela Lobenwein
- Univ.-Klinik für Gefäßchirurgie, Medizinische Universität Innsbruck, Anichstraße 35, 6020 Innsbruck, Österreich
| | - Maria Gummerer
- Univ.-Klinik für Gefäßchirurgie, Medizinische Universität Innsbruck, Anichstraße 35, 6020 Innsbruck, Österreich
| | - Sabine Wipper
- Univ.-Klinik für Gefäßchirurgie, Medizinische Universität Innsbruck, Anichstraße 35, 6020 Innsbruck, Österreich
| |
Collapse
|
9
|
Relationship Between the Severity of Exercise Induced Ischaemia and the Prevalence of Exercise Induced Calf Symptoms During Treadmill Testing With Transcutaneous Oximetry. Eur J Vasc Endovasc Surg 2022; 63:707-713. [DOI: 10.1016/j.ejvs.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
10
|
Schawe L, Raude B, Carstens JC, Hinterseher I, Hein RD, Omran S, Berger G, Hering NA, Buerger M, Greiner A, Frese JP. Effect of Revascularization on Intramuscular Vascular Endothelial Growth Factor Levels in Peripheral Arterial Disease. Biomedicines 2022; 10:471. [PMID: 35203679 PMCID: PMC8962418 DOI: 10.3390/biomedicines10020471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent driver of angiogenesis, which may help to relieve ischemia in peripheral arterial disease (PAD). We aimed to investigate the role of intramuscular VEGF in ischemic and non-ischemic skeletal muscle in PAD patients before and after surgical or endovascular revascularization and different stages of PAD. Biopsies of the gastrocnemius and vastus muscles from twenty PAD patients with stenosis or occlusion of the superficial femoral artery were obtained both during revascularization and 8 weeks postoperatively. The gastrocnemius muscle was considered ischemic, while vastus muscle biopsies served as intraindividual controls. The levels of vascular endothelial growth factor in muscle lysates were then determined by ELISA. Preoperative VEGF levels were significantly higher in ischemic muscles compared to the controls (98.07 ± 61.96 pg/mL vs. 55.50 ± 27.33 pg/mL, p = 0.004). Postoperative values decreased significantly (p = 0.010) to 54.83 ± 49.60 pg/mL in gastrocnemius biopsies. No significant change was observed in vastus muscle biopsies, with mean postoperative VEGF values found at 54.16 ± 40.66 pg/mL. Since all patients still had indications for revascularization, impairment of angiogenesis mechanisms can be assumed. More research about angiogenesis in PAD is needed with the ultimate goal to improve conservative treatment.
Collapse
Affiliation(s)
- Larissa Schawe
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| | - Ben Raude
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| | - Jan Christoph Carstens
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
- Department of Vascular Surgery, Medizinische Hochschule Brandenburg Theodor Fontane, Ruppiner Kliniken—University Hospital, 16816 Neuruppin, Germany
| | - Raphael Donatus Hein
- Department of Anaesthesiology and Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Safwan Omran
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| | - Gilles Berger
- Microbiology, Bioorganic & Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Bd du Triomphe, 1050 Brussels, Belgium;
| | - Nina A. Hering
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany;
| | - Matthias Buerger
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| | - Andreas Greiner
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| | - Jan Paul Frese
- Department of Vascular Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (B.R.); (J.C.C.); (I.H.); (S.O.); (M.B.); (A.G.); (J.P.F.)
| |
Collapse
|
11
|
Stavres J, Wang J, Sica CT, Blaha C, Herr M, Pai S, Cauffman A, Vesek J, Yang QX, Sinoway LI. Diffusion tensor imaging indices of acute muscle damage are augmented after exercise in peripheral arterial disease. Eur J Appl Physiol 2021; 121:2595-2606. [PMID: 34106324 PMCID: PMC10445221 DOI: 10.1007/s00421-021-04711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Although it is known that peripheral arterial disease (PAD) is associated with chronic myopathies, the acute muscular responses to exercise in this population are less clear. This study used diffusion tensor imaging (DTI) to compare acute exercise-related muscle damage between PAD patients and healthy controls. METHODS Eight PAD patients and seven healthy controls performed graded plantar flexion in the bore of a 3T MRI scanner. Exercise began at 2 kg and increased by 2 kg every 2 min until failure, or completion of 10 min of exercise. DTI images were acquired from the lower leg pre- and post-exercise, and were analyzed for mean diffusivity, fractional anisotropy (FA), and eigenvalues 1-3 (λ1-3) of the medial gastrocnemius (MG) and tibialis anterior (TA). RESULTS Results indicated a significant leg by time interaction for mean diffusivity, explained by a significantly greater increase in diffusivity of the MG in the most affected legs of PAD patients (11.1 × 10-4 ± 0.5 × 10-4 mm2/s vs. 12.7 × 10-4 ± 1.2 × 10-4 mm2/s at pre and post, respectively, P = 0.02) compared to healthy control subjects (10.8 × 10-4 ± 0.3 × 10-4 mm2/s vs. 11.2 × 10-4 ± 0.5 × 10-4 mm2/s at pre and post, respectively, P = 1.0). No significant differences were observed for the TA, or λ1-3 (all P ≥ 0.06). Moreover, no reciprocal changes were observed for FA in either group (all P ≥ 0.29). CONCLUSION These data suggest that calf muscle diffusivity increases more in PAD patients compared to controls after exercise. These findings are consistent with the notion that acute exercise results in increased muscle damage in PAD.
Collapse
Affiliation(s)
- Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Jianli Wang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Samuel Pai
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jeffrey Vesek
- Department of Molecular Biology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
12
|
The Role of Mitochondrial Function in Peripheral Arterial Disease: Insights from Translational Studies. Int J Mol Sci 2021; 22:ijms22168478. [PMID: 34445191 PMCID: PMC8395190 DOI: 10.3390/ijms22168478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Recent evidence demonstrates an involvement of impaired mitochondrial function in peripheral arterial disease (PAD) development. Specific impairments have been assessed by different methodological in-vivo (near-infrared spectroscopy, 31P magnetic resonance spectroscopy), as well as in-vitro approaches (Western blotting of mitochondrial proteins and enzymes, assays of mitochondrial function and content). While effects differ with regard to disease severity, chronic malperfusion impacts subcellular energy homeostasis, and repeating cycles of ischemia and reperfusion contribute to PAD disease progression by increasing mitochondrial reactive oxygen species production and impairing mitochondrial function. With the leading clinical symptom of decreased walking capacity due to intermittent claudication, PAD patients suffer from a subsequent reduction of quality of life. Different treatment modalities, such as physical activity and revascularization procedures, can aid mitochondrial recovery. While the relevance of these modalities for mitochondrial functional recovery is still a matter of debate, recent research indicates the importance of revascularization procedures, with increased physical activity levels being a subordinate contributor, at least during mild stages of PAD. With an additional focus on the role of revascularization procedures on mitochondria and the identification of suitable mitochondrial markers in PAD, this review aims to critically evaluate the relevance of mitochondrial function in PAD development and progression.
Collapse
|
13
|
Gratl A, Pesta D, Gruber L, Speichinger F, Raude B, Omran S, Greiner A, Frese JP. The effect of revascularization on recovery of mitochondrial respiration in peripheral artery disease: a case control study. J Transl Med 2021; 19:244. [PMID: 34088309 PMCID: PMC8178834 DOI: 10.1186/s12967-021-02908-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background Peripheral arterial disease (PAD) is accompanied by myopathy characterized by mitochondrial dysfunction. The aim of this experimental study was to investigate the effect of revascularization procedures on mitochondrial function in ischemic and non-ischemic muscle. Methods Muscle biopsies from patients with symptomatic stage IIB/III PAD caused by isolated pathologies of the superficial femoral artery were obtained from muscle regions within the chronic ischemic muscle (gastrocnemius) and from non-ischemic muscle (vastus lateralis) before and 6 weeks after invasive revascularization. High-resolution respirometry was used to investigate mitochondrial function and results were normalized to citrate synthase activity (CSA). Results are given in absolute values and fold over basal (FOB). Results Respiratory states (OXPHOS (P) and electron transfer (E) capacity) normalized to CSA decreased while CSA was increased in chronic ischemic muscle after revascularization. There were no changes in in non-ischemic muscle. The FOB of chronic ischemic muscle was significantly higher for CSA (chronic ischemic 1.37 (IQR 1.10–1.64) vs. non-ischemic 0.93 (IQR 0.69–1.16) p = 0.020) and significantly lower for respiratory states normalized to CSA when compared to the non-ischemic muscle (P per CSA chronic ischemic 0.64 (IQR 0.46–0.82) vs non-ischemic 1.16 (IQR 0.77–1.54) p = 0.011; E per CSA chronic ischemic 0.61 (IQR 0.47–0.76) vs. non-ischemic 1.02 (IQR 0.64–1.40) p = 0.010). Conclusions Regeneration of mitochondrial content and function following revascularization procedures only occur in muscle regions affected by malperfusion. This indicates that the restoration of blood and oxygen supply are important mediators aiding mitochondrial recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02908-0.
Collapse
Affiliation(s)
- Alexandra Gratl
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.,Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Sports Science, Medical Section, Innsbruck, Austria.,German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Leonhard Gruber
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fiona Speichinger
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ben Raude
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Safwan Omran
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andreas Greiner
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Jan Paul Frese
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
14
|
Pedersen BL, Helledie G, Eiken FL, Lawaetz J, Eiberg JP, Quistorff B. Effect of revascularisation on lower extremity muscle function in combined type 2 diabetes and critical limb threatening ischemia. INT ANGIOL 2021; 40:323-334. [PMID: 34008931 DOI: 10.23736/s0392-9590.21.04661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Critical limb-threatening ischemia (CLTI) and type 2 diabetes (T2D) frequently co-exist and often with less favourable outcome after revascularisation. The objective was to evaluate the effects of revascularisation on muscle function, perfusion and mitochondrial respiration in patients with combined CLTI and T2D. METHODS A prospective translational observational study. Two groups of patients facing unilateral peripheral revascularisation was included: Patients suffering from combined disease with CLTI+T2D (n= 14) and patients suffering from CLTI (n= 15). During pedal exercise testing, calf muscle perfusion was monitored with near-infrared spectroscopy (NIRS) and leg arterial volume flow in the common femoral artery with duplex ultrasound. Calf muscle biopsy and subsequent assessment of mitochondrial respiratory capacity on isolated muscle fibres was performed. Tests was performed before and six weeks after revascularisation. RESULTS After revascularisation, patients CLTI+T2D improved in muscle force from 8.48 kg (CI: 7.49-9.46) to 13.11 kg (CI: 11.58-14.63), (P<.001). Conversely, muscle force in patients suffering from nondiabetic CLTI decreased from 10.03 kg (CI: 9.1-10.96) to 9.73 kg (CI: 8.77- 10.69), (P=0.042). Muscle oxygenation during exercise improved more in the CLTI+T2D group 6.36 AUC (Area Under Curve), ((μM/kg)s) (CI: 5.71-7.01) compared to 2.11 ((μM/kg)s) (CI:1.38-2.83) in the CLTI group (P=.002). No improvement or difference between groups regarding mitochondrial function was detected. CONCLUSIONS Patients with combined CLTI+T2D, had an unsuspected better effect of revascularisation compared to patients with non-diabetic CLTI, in terms of increased muscle force (MVC) and improved muscle perfusion. Further studies are needed to elucidate the apparent interaction of the CLTI and T2D syndromes.
Collapse
Affiliation(s)
- Brian L Pedersen
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark -
| | - Gladis Helledie
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Frederik L Eiken
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Jonathan Lawaetz
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark.,Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas P Eiberg
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark.,Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, Nuclear Magnetic Resonance Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Unique Metabolomic Profile of Skeletal Muscle in Chronic Limb Threatening Ischemia. J Clin Med 2021; 10:jcm10030548. [PMID: 33540726 PMCID: PMC7867254 DOI: 10.3390/jcm10030548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic limb threatening ischemia (CLTI) is the most severe manifestation of peripheral atherosclerosis. Patients with CLTI have poor muscle quality and function and are at high risk for limb amputation and death. The objective of this study was to interrogate the metabolome of limb muscle from CLTI patients. To accomplish this, a prospective cohort of CLTI patients undergoing either a surgical intervention (CLTI Pre-surgery) or limb amputation (CLTI Amputation), as well as non-peripheral arterial disease (non-PAD) controls were enrolled. Gastrocnemius muscle biopsy specimens were obtained and processed for nuclear magnetic resonance (NMR)-based metabolomics analyses using solution state NMR on extracted aqueous and organic phases and 1H high-resolution magic angle spinning (HR-MAS) on intact muscle specimens. CLTI Amputation specimens displayed classical features of ischemic/hypoxic metabolism including accumulation of succinate, fumarate, lactate, alanine, and a significant decrease in the pyruvate/lactate ratio. CLTI Amputation muscle also featured aberrant amino acid metabolism marked by elevated branched chain amino acids. Finally, both Pre-surgery and Amputation CLTI muscles exhibited pronounced accumulation of lipids, suggesting the presence of myosteatosis, including cholesterol, triglycerides, and saturated fatty acids. Taken together, these metabolite differences add to a growing body of literature that have characterized profound metabolic disturbance’s in the failing ischemic limb of CLTI patients.
Collapse
|
16
|
Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants (Basel) 2020; 9:antiox9121304. [PMID: 33353218 PMCID: PMC7766400 DOI: 10.3390/antiox9121304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by atherosclerosis in the lower extremities, which leads to a spectrum of life-altering symptomatology, including claudication, ischemic rest pain, and gangrene requiring limb amputation. Current treatments for PAD are focused primarily on re-establishing blood flow to the ischemic tissue, implying that blood flow is the decisive factor that determines whether or not the tissue survives. Unfortunately, failure rates of endovascular and revascularization procedures remain unacceptably high and numerous cell- and gene-based vascular therapies have failed to demonstrate efficacy in clinical trials. The low success of vascular-focused therapies implies that non-vascular tissues, such as skeletal muscle and oxidative stress, may substantially contribute to PAD pathobiology. Clues toward the importance of skeletal muscle in PAD pathobiology stem from clinical observations that muscle function is a strong predictor of mortality. Mitochondrial impairments in muscle have been documented in PAD patients, although its potential role in clinical pathology is incompletely understood. In this review, we discuss the underlying mechanisms causing mitochondrial dysfunction in ischemic skeletal muscle, including causal evidence in rodent studies, and highlight emerging mitochondrial-targeted therapies that have potential to improve PAD outcomes. Particularly, we will analyze literature data on reactive oxygen species production and potential counteracting endogenous and exogenous antioxidants.
Collapse
|
17
|
The Missing Biomarker or Biomarker Panel in the Recovery of Muscle Mitochondrial Function. Eur J Vasc Endovasc Surg 2019; 59:116. [PMID: 31636015 DOI: 10.1016/j.ejvs.2019.09.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022]
|