1
|
Fróis A, Santos AC, Louro CS. Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. METALS 2023; 13:1955. [DOI: 10.3390/met13121955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The orthodontic supply market is a prosperous billion-dollar industry, driven by an increasing demand for orthodontic appliances. The supremacy of metallic first-generation biomaterials is evident for manufacturing brackets, archwires, bands, and other components due to their well-recognized chemical inertness, spontaneous passivation, biocompatibility, and favorable mechanical properties combination. However, the oral cavity is the ultimate corrosion-promoting environment for any metallic material. In this work, the general picture of the intraoral degradation of fixed orthodontic appliances is first addressed, from the causes to the harmful effects and their oral clinical implications. Current mitigation strategies are also pointed out, including the alloys’ bulk composition adjustment combined with new and advanced manufacturing processes and/or their surface treatment or coating deposition. The versatile use of thin films and coatings stands out with different deposition technologies: Many in vivo and in vitro efforts have been devoted to oral aging, from monolithic to composite architectures and micro- to nano-scale materials, to meet the best and safest oral practice demands. Unfortunately, literature data suggest that even the existing commercially available protective coatings have drawbacks and are fallible. Further multidisciplinary research is still required to effectively mitigate the corrosion behavior of fixed orthodontic appliances.
Collapse
Affiliation(s)
- António Fróis
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
- Faculty of Medicine, Biophysics Institute, Coimbra Institute for Clinical and Biomedical Research/Centre for Innovative Biomedicine and Biotechnology (iCBR/CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cristina Santos
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
- Faculty of Medicine, Biophysics Institute, Coimbra Institute for Clinical and Biomedical Research/Centre for Innovative Biomedicine and Biotechnology (iCBR/CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cristina Santos Louro
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
| |
Collapse
|
2
|
Pastor F, Rodriguez JC, Barrera JM, García-Menocal JAD, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2780. [PMID: 36833476 PMCID: PMC9956897 DOI: 10.3390/ijerph20042780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Metal ion release studies were carried out on three of the most commonly used orthodontic wires in the clinic: austenitic stainless steel, Ti-Mo, and superelastic NiTi, using three mouthwashes with different fluoride concentrations: 130, 200, and 380 ppm. Immersions were carried out in these mouthwashes at 37 °C for 1, 4, 7, and 14 days, and the ions released were determined by inductively coupled plasma-mass spectrometry (ICP-MS). All wires were observed by scanning electron microscopy (SEM). The results showed a moderate ion release in the stainless steel wires, with nickel and chromium values of 500 and 1000 ppb in the worst conditions for the wires: concentrations of 380 ppm fluoride and 14 days of immersion. However, in the Ti-Mo and NiTi alloys, an abrupt change in release was observed when the samples were immersed in 380 ppm fluoride concentrations. Titanium releases in Ti-Mo wires reached 200,000 ppb, creating numerous pits on the surface. Under the same conditions, the release of Ni and Ti ions from the superelastic wires also exceeded 220,000 ppb and 180,000 ppb, respectively. This release of ions causes variations in the chemical composition of the wires, causing the appearance of martensite plates in the austenitic matrix after 4 days of immersion. This fact causes it to lose its superelastic properties at a temperature of 37 °C. In the case of immersion in 380 ppm mouthwashes for more than 7 days, rich-nickel precipitates can be seen. These embrittle the wire and lose all tooth-correcting properties. It should be noted that the release of Ni ions can cause hypersensitivity in patients, particularly women. The results indicate that the use of mouthwashes with a high content of fluoride should not be recommended with orthodontic archwires.
Collapse
Affiliation(s)
- Francisco Pastor
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Juan Carlos Rodriguez
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José María Barrera
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José Angel Delgado García-Menocal
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Department Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
3
|
Jing PP, Li YX, Su YH, Liang WL, Leng YX. The role of metal ions in the behavior of bovine serum albumin molecules under physiological environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120604. [PMID: 34802930 DOI: 10.1016/j.saa.2021.120604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Metal ions released from metallic implants can affect the conformation and structural stability of proteins in biological fluids, which eventually affects the biocompatibility of implants. The present study aimed at understanding the interactions between the metal ions (Mn2+, Fe2+, Fe3+, Co2+, Cu2+, and Zn2+) and bovine serum albumin (BSA) molecules in physiological context. The structural information of BSA molecules and the microenvironment of functional groups were investigated using UV, Raman, and circular dichroism spectroscopy. The results revealed that addition of Fe3+, Fe2+, and Cu2+ ions alters the tertiary structure of BSA molecules and exposes the aromatic heterocyclic hydrophobic group of BSA amino acid residues. The addition of Fe3+ and Cu2+ ions results in increased viscosity and decreased intensity of the water peak in the BSA solution. Furthermore, Fe3+ and Cu2+ ions evidently promote the α-helix to β-sheet transformation of BSA molecules due to decreased disulfide bond stability. Tryptophan residues of BSA and metal ions containing BSA (Me+/BSA) solutions were found to be in a hydrophilic environment. Moreover, the addition of metal ions to BSA results in several of tyrosine residues acting as hydrogen-bond donors. Coomassie brilliant blue staining revealed that the addition of Cu2+ ions promotes the aggregation of BSA molecules. The findings of this study will be helpful for evaluating the biocompatibility of metallic implants.
Collapse
Affiliation(s)
- P P Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y X Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y H Su
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - W L Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y X Leng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
4
|
Chitra P, Prashantha GS, Rao A, Jois HS. In Vivo Evaluation of Micronucleus Frequencies in Buccal Mucosal Cells of Orthodontic Patients with and Without Fluoride Use. JOURNAL OF INDIAN ORTHODONTIC SOCIETY 2021. [DOI: 10.1177/03015742211037307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Fluoride agents to prevent white spot lesions are used often during orthodontic treatment. The beneficial effects of fluoride, when consumed within permissible limits on dental structures, are well known. Their implications on underlying biological tissues, however, are unknown. Mouthwashes and dentifrices with fluorides are associated with metal ion release into the mouth with possible cell genotoxicity. Since these cariostatic agents are frequently used during orthodontic therapy, a deeper understanding of the effects of fluoride on oral tissues was considered necessary. Methodology: Three groups of patients (30 each)—group 1 (untreated controls), group 2 (non-fluoridated), and group 3 (Fluoridated) were analyzed. Patients in groups 2 and 3 were bonded with the same bracket prescription and treated with similar archwire sequences. Buccal mucosal cells at 4 specific time periods (before treatment, 1 week, 30 days, and 6 months) were collected, using a wooden tongue depressor, and assessed for any nuclear abnormalities. Comparisons of changes were made with an untreated control group and also between the non-fluoridated and fluoridated groups. Relevant conclusions were drawn after analysis of the results. Results: Greater number of nuclei were observed at the 30-day time interval in the fluoridated group, which was statistically significant at P < .001. Conclusion: Use of fluoridated oral hygiene products in patients undergoing fixed orthodontic treatment with NiTi archwires could increase the risk of micronuclei formation in buccal mucosal cells.
Collapse
Affiliation(s)
- Prasad Chitra
- Department of Orthodontics and Dentofacial Orthopaedics, Army College of Dental Sciences, Secunderabad, Telangana, India
| | - GS Prashantha
- Department of Orthodontics and Dentofacial Orthopaedics, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Arun Rao
- Department of Mechanical Engineering, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Harshvardhan S Jois
- Department of Oral Pathology, Army College of Dental Sciences, Secunderabad, Telangana, India
| |
Collapse
|
5
|
Apiwantanakul N, Chantarawaratit PO. Cytotoxicity, genotoxicity, and cellular metal accumulation caused by professionally applied fluoride products in patients with fixed orthodontic appliances: A randomized clinical trial. J World Fed Orthod 2021; 10:98-104. [PMID: 34305036 DOI: 10.1016/j.ejwf.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUD Corrosion of metal orthodontic appliances caused by professional fluoride products has been recently concerned. Therefore, the objective of this study was to evaluate the cytotoxic and genotoxic effect of these products on buccal mucosal cells from patients wearing fixed orthodontic appliances. METHODS A total of 44 patients, aged 12 to 35 years, who began orthodontic treatment with fixed appliances were included in this single-center, prospective, randomized clinical trial. Patients were randomly allocated into 4 parallel groups according to the type of professional fluoride treatment applied after placing the appliances: acidulated phosphate fluoride gel (APF); neutral fluoride gel (NGel); fluoride varnish (FVa); and without fluoride treatment (control). Buccal cells were collected before treatment (T1) and 3 months after appliance placement (T2). The cells were assayed for cell viability and underwent Papanicolaou staining. Cells with micronuclei and degenerative nuclear alterations were scored using a light microscope. Cell metal content was quantified by inductively coupled plasma-mass spectrometry. The data were analyzed with the Kruskal-Wallis test. RESULTS The intracellular nickel content in the APF group significantly increased (P < 0.05), whereas that of the control, NGel, and FVa groups did not. The changes in chromium concentration in all groups were not significantly different compared with control. Use of APF resulted in a significantly higher decrease in cell viability and increase in morphologic signs of cell death compared with control (P < 0.05). The change in frequency of micronucleated cells was not significantly different from that in the control group. CONCLUSIONS Applying APF gel on fixed orthodontic appliances increased the cell metal content and decreased cell viability; however, genotoxic effects were absent. FVa and NGel are suggested as the products of choice to use during orthodontic treatment.
Collapse
Affiliation(s)
- Nantharat Apiwantanakul
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
6
|
Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. CRYSTALS 2020. [DOI: 10.3390/cryst10121151] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During the 20th century, metal alloys have assumed an important role as restorative materials. Among existing examples, cobalt–chromium (Co–Cr) alloys increasingly began to be used in medicine and especially in dentistry. Their success is mainly due to their mechanical properties such as stiffness, strength and corrosion resistance, thus allowing a high biocompatibility. There are quite meaningful data on the corrosion and toxicity of Co–Cr alloys for their use in restorative materials such as dental prostheses. Toxicological studies following Co and Cr exposures in the oral cavity are more difficult to conduct because there are many different situations leading to the release of metal ions and wear particles. Furthermore, the links between exposure and the appearance of local or systemic toxicity are not automatic. Since 2017, the European Union (EU) regulatory framework for Co–Cr alloys has been undergoing profound changes. A new EU Medical Devices Regulation (MDR) (2017/745) will be applied in May 2021 with the need to consider that Co metal is a new carcinogenic, mutagenic and toxic to reproduction (CMR) substance. On 18 February 2020, the 14th Adaptation to Technical Progress (ATP14) to the Classification, Labelling and Packaging (CLP) regulation was published, including the harmonised classification for Co metal as a CMR 1B substance. In this context, the use of Co might be forbidden if the medical devices are invasive and as soon as they include more than 0.1% (m/m) Co. This review provides a specific overview on Co–Cr dental alloys in terms of metal ions and wear particles release, toxicological risks, and the actual and new EU regulatory framework.
Collapse
|
7
|
Chitra P, Prashantha GS, Rao A. Effect of fluoride agents on surface characteristics of NiTi wires. An ex vivo investigation. J Oral Biol Craniofac Res 2020; 10:435-440. [PMID: 32817814 DOI: 10.1016/j.jobcr.2020.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 12/01/2022] Open
Abstract
Aim To analyze the degree of corrosion of nickel titanium arch wires in patients with and without exposure to fluorides. Material and methods This was an ex vivo study comprising of 60 subjects undergoing fixed orthodontic treatment. Group 1(controls) comprised of 30 sets of new unused NiTi wires and unused 11, 15 brackets, Group 2(patients) comprised of 30 sets of non fluoridated NiTi wires and 11, 15 brackets and Group 3(patients) had 30 sets of fluoridated NiTi wires and 11, 15 brackets. NiTi wires were used over 6 months of treatment(0.014″,0.016″, 16 × 22", each wire was used for 2 months and replaced with the next size). All wires were retrieved, stored and analyzed. At 6 months, brackets from 11 to 15 were debonded in both treatment groups. Archwires and brackets in 3 groups were subjected to SEM analysis at 500 and 1000X to observe differences. Additionally, EDX Spectroscopy was undertaken to evaluate surface elemental compositional differences in groups. Results Significant differences among groups were evident in brackets and archwires tested. Maximum degradation, cracks and dark spots were seen in wires and brackets exposed to fluoride agents. EDX spectroscopy revealed least Ni% in fluoridated wires and brackets. Conclusions Increased leaching of metal ions was evident when wires and brackets are exposed to fluoride agents during treatment. Use of non fluoridated mouthwash and toothpastes may be considered in orthodontic patients without risk of caries to mitigate such effects.
Collapse
Affiliation(s)
- Prasad Chitra
- Department of Orthodontics & Dentofacial Orthopaedics, Army College of Dental Sciences, Secunderabad, Telangana, 500087, India
| | - G S Prashantha
- Department of Orthodontics & Dentofacial Orthopaedics, M.S.Ramaiah University of Applied Sciences Bengaluru, Karnataka, 560054, India
| | - Arun Rao
- Department of Mechanical Engineering, M.S.Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| |
Collapse
|