2
|
Nell D, Wolf R, Podgorny PM, Kuschnereit T, Kuschnereit R, Dabers T, Stracke S, Schmidt T. Complement Activation in Nephrotic Glomerular Diseases. Biomedicines 2024; 12:455. [PMID: 38398059 PMCID: PMC10886869 DOI: 10.3390/biomedicines12020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The nephrotic syndrome holds significant clinical importance and is characterized by a substantial protein loss in the urine. Damage to the glomerular basement membrane or podocytes frequently underlies renal protein loss. There is an increasing belief in the involvement of the complement system, a part of the innate immune system, in these conditions. Understanding the interactions between the complement system and glomerular structures continually evolves, challenging the traditional view of the blood-urine barrier as a passive filter. Clinical studies suggest that a precise inhibition of the complement system at various points may soon become feasible. However, a thorough understanding of current knowledge is imperative for planning future therapies in nephrotic glomerular diseases such as membranous glomerulopathy, membranoproliferative glomerulonephritis, lupus nephritis, focal segmental glomerulosclerosis, and minimal change disease. This review provides an overview of the complement system, its interactions with glomerular structures, and insights into specific glomerular diseases exhibiting a nephrotic course. Additionally, we explore new diagnostic tools and future therapeutic approaches.
Collapse
|
3
|
Zipfel PF, Zipfel S, Wiech T. [Role of Complement in Kidney Diseases - New Aspects]. Dtsch Med Wochenschr 2023; 148:774-779. [PMID: 37257480 DOI: 10.1055/a-1936-6697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Complement is a central part of the immune system. In the human body, complement is responsible for recognition of infectious microbes, for coordinating the adaptive immune response, controlling homeotic reactions and for the non-inflammatory removal of modified self-cells and infectious microbes. Complement is also closely linked to another proteolytic cascade, the coagulation system. Defective activation and altered complement regulation drives pathology of several severe human kidney diseases.This manuscript summarizes the latest developments on the role of complement in kidney diseases, on new complement inhibitors and on recent complement targeting therapies. In particular focusing on diseases (1) atypical Hemolytic Uremic Syndrome, (2) C3 Glomerulopathy, (3) Anti Neutrophil Cytoplasmic Antibody Mediated Vasculitis, (4) IgA Nephropathy, (5) Membranous Glomerulopathy, (6) Systemic Lupus Erythematosus, (7) Transplant rejection and (8) COVID 19 Infection-Triggered Kidney Diseases. More excitement is generated in this field, as more and more complement mediated diseases can be treated. Several complement targeting compounds are approved by the EMA and FDA and an increasing number of new candidates are in late phase clinical trials. In addition, clinical guidelines are developed for Diagnosis and Therapy of complement mediated diseases, new biomarkers are evaluated in clinical studies, and diagnostic guidelines are in development. The recent Covid infections showed a clear link of complement in thrombo inflammation, which ultimately results in kidney damage. These aspects have increased further the focus of complement inhibitors in COVID infections.
Collapse
Affiliation(s)
- Peter F Zipfel
- Abteilung Infektionsbiologie, Leibniz institut für Naturstoff Forschung und Infektionsbiologie, Jena, Deutschland
- Institut für Mikrobiologie, Friedrich-Schiller-Universität, Jena
| | - Svante Zipfel
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Herz- und Gefäßchirurgie, Uni-Klinikum Hamburg-Eppendorf, Universitäres Herzzentrum, Hamburg
| | - Thorsten Wiech
- Sektion Nephropathologie, Institut für Pathologie, Universitäts Krankenhaus, Hamburg Eppendorf, Hamburg
| |
Collapse
|
4
|
Seifert L, Zahner G, Meyer-Schwesinger C, Hickstein N, Dehde S, Wulf S, Köllner SMS, Lucas R, Kylies D, Froembling S, Zielinski S, Kretz O, Borodovsky A, Biniaminov S, Wang Y, Cheng H, Koch-Nolte F, Zipfel PF, Hopfer H, Puelles VG, Panzer U, Huber TB, Wiech T, Tomas NM. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat Commun 2023; 14:473. [PMID: 36709213 PMCID: PMC9884226 DOI: 10.1038/s41467-023-36068-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune disease characterized by glomerular immune complexes containing complement components. However, both the initiation pathways and the pathogenic significance of complement activation in MN are poorly understood. Here, we show that components from all three complement pathways (alternative, classical and lectin) are found in renal biopsies from patients with MN. Proximity ligation assays to directly visualize complement assembly in the tissue reveal dominant activation via the classical pathway, with a close correlation to the degree of glomerular C1q-binding IgG subclasses. In an antigen-specific autoimmune mouse model of MN, glomerular damage and proteinuria are reduced in complement-deficient mice compared with wild-type littermates. Severe disease with progressive ascites, accompanied by extensive loss of the integral podocyte slit diaphragm proteins, nephrin and neph1, only occur in wild-type animals. Finally, targeted silencing of C3 using RNA interference after the onset of proteinuria significantly attenuates disease. Our study shows that, in MN, complement is primarily activated via the classical pathway and targeting complement components such as C3 may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Naemi Hickstein
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Wulf
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Froembling
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Yanyan Wang
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Helmut Hopfer
- Department of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Schmidt T, Afonso S, Perie L, Heidenreich K, Wulf S, Krebs CF, Zipfel PF, Wiech T. An Interdisciplinary Diagnostic Approach to Guide Therapy in C3 Glomerulopathy. Front Immunol 2022; 13:826513. [PMID: 35693785 PMCID: PMC9186056 DOI: 10.3389/fimmu.2022.826513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Since the re-classification of membranoproliferative glomerulonephritis the new disease entity C3 glomerulopathy is diagnosed if C3 deposition is clearly dominant over immunoglobulins in immunohistochemistry or immunofluorescence. Although this new definition is more orientated at the pathophysiology as mediated by activity of the alternative complement pathway C3 glomerulopathy remains a heterogenous group of disorders. Genetic or autoimmune causes are associated in several but not in all patients with this disease. However, prognosis is poorly predictable, and clinicians cannot directly identify patients that might benefit from therapy. Moreover, therapy may range from supportive care alone, unspecific immune suppression, plasma treatment, or plasma exchange to complement inhibition. The current biopsy based diagnostic approaches sometimes combined with complement profiling are not sufficient to guide clinicians neither (i) whether to treat an individual patient, nor (ii) to choose the best therapy. With this perspective, we propose an interdisciplinary diagnostic approach, including detailed analysis of the kidney biopsy for morphological alterations and immunohistochemical staining, for genetic analyses of complement genes, complement activation patterning in plasma, and furthermore for applying novel approaches for convertase typing and complement profiling directly in renal tissue. Such a combined diagnostic approach was used here for a 42-year-old female patient with a novel mutation in the Factor H gene, C3 glomerulopathy and signs of chronic endothelial damage. We present here an approach that might in future help to guide therapy of renal diseases with relevant complement activation, especially since diverse new anti-complement agents are under clinical investigation.
Collapse
Affiliation(s)
- Tilman Schmidt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Afonso
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Luce Perie
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | | | - Sonia Wulf
- Nephropathology Section, Institute of Pathology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thorsten Wiech
- Nephropathology Section, Institute of Pathology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|