1
|
Maslyennikov Y, Bărar AA, Rusu CC, Potra AR, Tirinescu D, Ticala M, Urs A, Pralea IE, Iuga CA, Moldovan DT, Kacso IM. The Spectrum of Minimal Change Disease/Focal Segmental Glomerulosclerosis: From Pathogenesis to Proteomic Biomarker Research. Int J Mol Sci 2025; 26:2450. [PMID: 40141093 PMCID: PMC11941885 DOI: 10.3390/ijms26062450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Podocyte injury plays a central role in both focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). Pathogenic mechanisms are diverse and incompletely understood, partially overlap between FSGS and MCD, and are not reflected by kidney biopsy. In order to optimize the current variable response to treatment, personalized management should rely on pathogenesis. One promising approach involves identifying biomarkers associated with specific pathogenic pathways. With the advancement of technology, proteomic studies could be a valuable tool to improve knowledge in this area and define valid biomarkers, as they have in other areas of glomerular disease. This work attempts to cover and discuss the main mechanisms of podocyte injury, followed by a review of the recent literature on proteomic biomarker studies in podocytopathies. Most of these studies have been conducted on biofluids, while tissue proteomic studies applied to podocytopathies remain limited. While we recognize the importance of non-invasive biofluid biomarkers, we propose a sequential approach for their development: tissue proteomics could first identify proteins with increased expression that may reflect underlying disease mechanisms; subsequently, the validation of these proteins in urine or plasma could pave the way to a diagnostic and prognostic biomarker-based approach.
Collapse
Affiliation(s)
- Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Alexandra Urs
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Ioana Ecaterina Pralea
- Department of Personalized Medicine and Rare Diseases, MedFuture—Research Centre for Biomedical Research, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.E.P.); (C.A.I.)
| | - Cristina Adela Iuga
- Department of Personalized Medicine and Rare Diseases, MedFuture—Research Centre for Biomedical Research, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.E.P.); (C.A.I.)
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| |
Collapse
|
2
|
Yousif G, Murugesan S, Djekidel MN, Terranegra A, Gentilcore G, Grivel JC, Al Khodor S. Distinctive blood and salivary proteomics signatures in Qatari individuals at high risk for cardiovascular disease. Sci Rep 2025; 15:4056. [PMID: 39901062 PMCID: PMC11790934 DOI: 10.1038/s41598-025-87596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of global morbidity and mortality. Timely diagnosis is important in reducing both short and long-term health complications. Saliva has emerged as a potential source for biomarker discovery, offering a non-invasive tool for early detection of individuals at elevated risk for CVD, yet large-scale extensive proteomic analysis using saliva for a comprehensive biomarker discovery remains limited. In an effort to develop a diagnostic tool using saliva samples, our study aims to assess the salivary and plasma proteomes in subjects with high risk of developing CVD using a large-scale proteomic approach. Leveraging on the SOMAscan platform, we analyzed 1,317 proteins in saliva and plasma collected from subjects at a high risk of CVD (HR-CVD) and compared the profiles to subjects with low risk of CVD (LR-CVD). Our analysis revealed significant differences in the plasma and salivary proteins between the two groups. Pathway enrichment analysis of the differentially detected proteins revealed that the immune system activation and extracellular matrix remodeling are the most enriched pathways in the CVD-HR group. Comparing proteomic signatures between plasma and saliva, we found approximately 42 and 17 differentially expressed proteins associated with CVD-HR uniquely expressed in plasma and saliva respectively. Additionally, we identified eight common CVD-risk biomarkers shared between both plasma and saliva, demonstrating promising diagnostic tools for identifying individuals at high risk of developing CVD. In conclusion, saliva proteomics holds a significant promise to identify subjects with a high risk to develop CVD. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Ghada Yousif
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhang Y, Yao T, Xu Y, Wang Y, Han S. Circulating RAC1 contributed to steroid-sensitive nephrotic syndrome: Mendelian randomization, single-cell RNA-sequencing, proteomic, and experimental evidence. Ren Fail 2024; 46:2416087. [PMID: 39422242 PMCID: PMC11492449 DOI: 10.1080/0886022x.2024.2416087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES The small GTPase Rac1 (RAC1) has been linked to podocyte disorders and steroid-sensitive nephrotic syndrome (SSNS). The aim of this study was to explore and validate the potential causal association between circulating RAC1 and SSNS. METHODS The association between circulating RAC1 and SSNS at both gene expression and proteomic levels was investigated using Mendelian randomization analysis, and further validated by single-cell RNA-sequencing, proteomic analysis, and experimental studies. The genetic instruments comprised cis-expression quantitative trait loci (cis-eQTLs) associated with RAC1 gene expression and protein QTLs correlated with plasma RAC1 protein levels. Causal associations were estimated utilizing the inverse variance weighted and MR-PRESSO methods. Validation of RAC1 expression was conducted through single-cell RNA-sequencing of peripheral blood mononuclear cells from patients with SSNS and healthy controls. Proteomic analysis was performed among patients with minimal change nephrotic syndrome. Experimental validation was conducted using a puromycin aminonucleoside (PAN)-induced nephrosis model. RESULTS Increased expression of RAC1 was associated with a higher risk of SSNS (gene expression level: odds ratio [OR], 1.53; 95% confidence interval [CI], 1.02-2.28; protein level: OR, 1.82; 95% CI, 1.05-3.17). The results of MR-PRESSO were consistent (gene expression level: OR, 1.49; 95% CI, 1.17-1.92; protein level: OR, 1.81; 95% CI, 1.16-2.85). Single-cell RNA sequencing and proteomic analysis confirmed elevated RAC1 expression in patients with SSNS compared to healthy controls. Experimental data further supported increased RAC1 expression in PAN-induced nephropathy. CONCLUSIONS Increased expression of RAC1 might be causally associated with SSNS, suggesting that targeting RAC1 might represent a potential therapeutic strategy for SSNS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Lopez LN, Durbin-Johnson B, Vargas CR, Ruzinski J, Goodling A, Mehrotra R, Vaisar T, Rocke DM, Afkarian M. Comparative Analysis of Protein Quantification by the SomaScan Assay versus Orthogonal Methods in Urine from People with Diabetic Kidney Disease. J Proteome Res 2024; 23:2598-2607. [PMID: 38965919 DOI: 10.1021/acs.jproteome.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
To our knowledge, calibration curves or other validations for thousands of SomaScan aptamers are not publicly available. Moreover, the abundance of urine proteins obtained from these assays is not routinely validated with orthogonal methods (OMs). We report an in-depth comparison of SomaScan readout for 23 proteins in urine samples from patients with diabetic kidney disease (n = 118) vs OMs, including liquid chromatography-targeted mass spectrometry (LC-MS), ELISA, and nephelometry. Pearson correlation between urine abundance of the 23 proteins from SomaScan 3.2 vs OMs ranged from -0.58 to 0.86, with a median (interquartile ratio, [IQR]) of 0.49 (0.18, 0.53). In multivariable linear regression, the SomaScan readout for 6 of the 23 examined proteins (26%) was most strongly associated with the OM-derived abundance of the same (target) protein. For 3 of 23 (13%), the SomaScan and OM-derived abundance of each protein were significantly associated, but the SomaScan readout was more strongly associated with OM-derived abundance of one or more "off-target" proteins. For the remaining 14 proteins (61%), the SomaScan readouts were not significantly associated with the OM-derived abundance of the targeted proteins. In 6 of the latest group, the SomaScan readout was not associated with urine abundance of any of the 23 quantified proteins. To sum, over half of the SomaScan results could not be confirmed by independent orthogonal methods.
Collapse
Affiliation(s)
- Lauren N Lopez
- Division of Nephrology, Department of Medicine, University of California, Davis, California 95616, United States
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, California 95616, United States
| | - Chenoa R Vargas
- Division of Nephrology, Department of Medicine, University of California, Davis, California 95616, United States
| | - John Ruzinski
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Anne Goodling
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Rajnish Mehrotra
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Tomas Vaisar
- Diabetes Institute, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle,Washington98195,United States
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, California 95616, United States
| | - Maryam Afkarian
- Division of Nephrology, Department of Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Nell D, Wolf R, Podgorny PM, Kuschnereit T, Kuschnereit R, Dabers T, Stracke S, Schmidt T. Complement Activation in Nephrotic Glomerular Diseases. Biomedicines 2024; 12:455. [PMID: 38398059 PMCID: PMC10886869 DOI: 10.3390/biomedicines12020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The nephrotic syndrome holds significant clinical importance and is characterized by a substantial protein loss in the urine. Damage to the glomerular basement membrane or podocytes frequently underlies renal protein loss. There is an increasing belief in the involvement of the complement system, a part of the innate immune system, in these conditions. Understanding the interactions between the complement system and glomerular structures continually evolves, challenging the traditional view of the blood-urine barrier as a passive filter. Clinical studies suggest that a precise inhibition of the complement system at various points may soon become feasible. However, a thorough understanding of current knowledge is imperative for planning future therapies in nephrotic glomerular diseases such as membranous glomerulopathy, membranoproliferative glomerulonephritis, lupus nephritis, focal segmental glomerulosclerosis, and minimal change disease. This review provides an overview of the complement system, its interactions with glomerular structures, and insights into specific glomerular diseases exhibiting a nephrotic course. Additionally, we explore new diagnostic tools and future therapeutic approaches.
Collapse
|
6
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
8
|
Previtali P, Pagani L, Risca G, Capitoli G, Bossi E, Oliveira G, Piga I, Radice A, Trezzi B, Sinico RA, Magni F, Chinello C. Towards the Definition of the Molecular Hallmarks of Idiopathic Membranous Nephropathy in Serum Proteome: A DIA-PASEF Approach. Int J Mol Sci 2023; 24:11756. [PMID: 37511514 PMCID: PMC10380405 DOI: 10.3390/ijms241411756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a pathologically defined disorder of the glomerulus, primarily responsible for nephrotic syndromes (NS) in nondiabetic adults. The underlying molecular mechanisms are still not completely clarified. To explore possible molecular and functional signatures, an optimised mass spectrometry (MS) method based on next-generation data-independent acquisition combined with ion-mobility was applied to serum of patients affected by IMN (n = 15) or by other glomerulopathies (PN) (n = 15). The statistical comparison highlighted a panel of 57 de-regulated proteins with a significant increase in lipoprotein-related proteins (APOC1, APOB, APOA1, APOL1 and LCAT) and a substantial quantitative alteration of key serpins (including A4, D1, A7, A6, F2, F1 and 1) possibly associated with IMN or NS and podocyte stress. A critical dysregulation in metabolisms of lipids (e.g., VLDL assembly and clearance) likely to be related to known hyperlipidemia in IMN, along with involvement of non-classical complement pathways and a putative enrolment of ficolin-2 in sustaining the activation of the lectin-mediated complement system have been pinpointed. Moreover, mannose receptor CD206 (MRC1-down in IMN) and biotinidase (BTD-up in IMN) are able alone to accurately distinguish IMN vs. PN. To conclude, our work provides key proteomic insights into the IMN complexity, opening the way to an efficient stratification of MN patients.
Collapse
Affiliation(s)
- Paolo Previtali
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lisa Pagani
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Eleonora Bossi
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Glenda Oliveira
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Isabella Piga
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Antonella Radice
- Microbiology Institute, ASST (Azienda Socio Sanitaria Territoriale) Santi Paolo e Carlo, 20142 Milan, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milano Bicocca and Nephrology, 20900 Monza, Italy
- Dialysis Unit, ASST-Monza, Ospedale San Gerardo, 20900 Monza, Italy
| | - Renato Alberto Sinico
- Department of Medicine and Surgery, University of Milano Bicocca and Nephrology, 20900 Monza, Italy
- Dialysis Unit, ASST-Monza, Ospedale San Gerardo, 20900 Monza, Italy
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Clizia Chinello
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| |
Collapse
|
9
|
Blatt S, Kämmerer PW, Krüger M, Surabattula R, Thiem DGE, Dillon ST, Al-Nawas B, Libermann TA, Schuppan D. High-Multiplex Aptamer-Based Serum Proteomics to Identify Candidate Serum Biomarkers of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15072071. [PMID: 37046731 PMCID: PMC10093013 DOI: 10.3390/cancers15072071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Improved serological biomarkers are needed for the early detection, risk stratification and treatment surveillance of patients with oral squamous cell carcinoma (OSCC). We performed an exploratory study using advanced, highly specific, DNA-aptamer-based serum proteomics (SOMAscan, 1305-plex) to identify distinct proteomic changes in patients with OSCC pre- vs. post-resection and compared to healthy controls. A total of 63 significantly differentially expressed serum proteins (each p < 0.05) were found that could discriminate between OSCC and healthy controls with 100% accuracy. Furthermore, 121 proteins were detected that were significantly altered between pre- and post-resection sera, and 12 OSCC-associated proteins reversed to levels equivalent to healthy controls after resection. Of these, 6 were increased and 6 were decreased relative to healthy controls, highlighting the potential relevance of these proteins as OSCC tumor markers. Pathway analyses revealed potential pathophysiological mechanisms associated with OSCC. Hence, quantitative proteome analysis using SOMAscan technology is promising and may aid in the development of defined serum marker assays to predict tumor occurrence, progression and recurrence in OSCC, and to guide personalized therapies.
Collapse
|
10
|
Zhang AH, Dai GX, Zhang QD, Huang HD, Liu WH. The Value of Peripheral Blood Cell Ratios in Primary Membranous Nephropathy: A Single Center Retrospective Study. J Inflamm Res 2023; 16:1017-1025. [PMID: 36923464 PMCID: PMC10010743 DOI: 10.2147/jir.s404591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Background Primary membranous nephropathy (PMN) is a common cause of nephrotic syndrome in adults. Forty percent of the patients continue to progress and eventually develop into chronic renal failure. Although phospholipase A2 receptor (PLA2R) is the major antigen of PMN, the clinical features do not often parallel with the antibody titers. Therefore, it is significant to find relative credible markers to predict the treatment response. Methods One hundred and eighteen PMN patients were recruited. The response to treatment was defined as ALB≥30g/L at 6 months and complete remission (CR) or not at the end of the follow-up. Renal outcome endpoint was defined as 50% or more Cr increase at the end. Results The patients with poor treatment effects had numerically higher platelet-lymphocytes ratio (PLR). For patients with CR or not, the difference was near to statistic significant (P=0.095). When analyzing CR or not, the fitting of the binary logistic regression model including both PLA2R Ab titer and PLR (Hosmer-Lemeshow test: χ 2=8.328, P = 0.402; OR (PLA2R Ab titer) = 1.002 (95% CI 1.000-1.004, P = 0.042); OR (PLR) = 1.006 (95% CI 0.999-1.013, P = 0.098)) was markedly better than that with only PLA2R Ab titer (Hosmer-Lemeshow test: χ 2=13.885, P = 0.016). The patients with renal function deterioration showed significantly higher monocyte-lymphocyte ratio (MLR) (0.26 (0.22-0.31) vs 0.18 (0.13-0.22), P = 0.012). Conclusion PMN patients with poor treatment response tended to have higher PLR at the time of renal biopsy, and a higher MLR was associated with poor renal outcomes. Our findings suggested that PLR and MLR might be used to predict treatment efficacy and prognosis for PMN patients, respectively.
Collapse
Affiliation(s)
- Ai-Hua Zhang
- Nephrology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Guang-Xia Dai
- Endocrinology Department, Beijing Nanyuan Hospital, Beijing, People's Republic of China
| | - Qi-Dong Zhang
- Nephrology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Hong-Dong Huang
- Nephrology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Wen-Hu Liu
- Nephrology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
11
|
Nishi H. Aptamer-Based Proteomic Platform for Human Immune-Mediated Kidney Diseases. Kidney Int Rep 2022; 7:1450-1452. [PMID: 35812268 PMCID: PMC9263405 DOI: 10.1016/j.ekir.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hiroshi Nishi
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|