1
|
Esmaeilzadeh Aghjeh M, Suer I, Dirim AB, Kaya M, Ozturk S. Advances in focal segmental glomerulosclerosis research: genetic causes to non-coding RNAs. Mol Biol Rep 2025; 52:384. [PMID: 40210838 DOI: 10.1007/s11033-025-10488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a clinicopathological illness characterized by podocyte damage, impairing glomerular filtration, and substantial proteinuria, which often results in end-stage renal disease (ESRD). Divided into primary, secondary, genetic, and idiopathic categories, its diverse origin highlights the intricacy of its diagnosis and treatment. The existing dependence on immunosuppressive medicines highlights their side effects and inconsistent efficacy, underscoring the pressing necessity for innovative, focused treatments. Recent advancements in genomics and molecular biology have shown the significant involvement of genetic alterations, especially in podocyte-associated proteins, in the pathogenesis of FSGS. Identifying possible novel biomarkers for diagnosing FSGS and monitoring disease activity has revitalized interest in this condition. Recent data underscores the significance of non-coding RNAs, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), in the modulation of gene expression and podocyte functionality. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. Particular dysregulated miRNAs and circRNAs have demonstrated potential as biomarkers for early diagnosis and disease monitoring. Furthermore, understanding lncRNA-mediated pathways provides novel therapeutic targets. This review consolidates current progress in elucidating the genetic and molecular processes of FSGS, emphasizing biomarker identification and treatment innovation.
Collapse
Affiliation(s)
- Maryam Esmaeilzadeh Aghjeh
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Department of Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Burak Dirim
- Department of Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Williquett J, Perez-Gill C, Allamargot C, Rooney F, Pollak MR, Sun H. Dynll1-PI31 Interaction Enhances Proteolysis Through the Proteasome, Representing a Novel Therapeutic Target for INF2-Related FSGS. KIDNEY360 2025; 6:38-48. [PMID: 39621430 PMCID: PMC11793186 DOI: 10.34067/kid.0000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Key Points The R218Q mutation disrupts sequestration of Dynll1 by inverted formin 2, promotes Dynll1-PI31 interaction, and enhances proteasome-mediated nephrin degradation. Suppression of proteasome-mediated proteolysis with proteasome inhibitors is a new therapeutic strategy for inverted formin 2-mediated FSGS. Background The p.Arg218Gln (R218Q) mutation in the inverted formin 2 (INF2 ) gene causes podocytopathy prone to FSGS. This mutation disrupts the ability of INF2 to sequester dynein light chain 1 (DYNLL1), thus promoting dynein-mediated mistrafficking of the slit diaphragm protein, nephrin, to proteolytic pathways. Bortezomib, a proteasome inhibitor, stabilizes nephrin in R218Q knockin (KI) podocytes, suggesting a role for the ubiquitin proteasome system (UPS) in dynein-driven pathogenesis. However, the link between dynein and the UPS is unknown. This study tested the hypothesis that INF2 R218Q promotes proteasome-mediated degradation of nephrin through an increased interaction between Dynll1 and the proteasomal inhibitor of 31kD (PI31), a Dynll1 adaptor that potentially couples the UPS with dynein cargoes. Methods The essential role of PI31 in UPS-mediated degradation of nephrin, a known dynein cargo, was studied in cultured R218Q KI mouse podocytes by applying genetic or chemical interventions to inhibit the activity of PI31 or of the proteasome. The protective effect of bortezomib in dynein-driven podocytopathy and FSGS was tested in R218Q KI mice challenged with puromycin aminonucleoside, a murine model of FSGS. Results The R218Q mutation in INF2 disrupted sequestration of Dynll1 by INF2, allowing Dynll1 to be captured by PI31 and promoting dynein-mediated transport of nephrin to the proteasome. Each of the following manipulations was sufficient to restore nephrin proteostasis in R218Q KI podocytes: knocking down Dynll1 or PI31 , inactivating dynein, or inhibiting the activity of the proteasome. In R218Q KI mice challenged with puromycin aminonucleoside, dynein-mediated mistrafficking and depletion of nephrin were correlated with increased Dynll1-PI31 interaction; the resulting podocytopathy and FSGS were ameliorated by bortezomib. Conclusions The Dynll1-PI31 interaction facilitates dynein-driven trafficking of nephrin to the proteasome and proteasome-mediated degradation of nephrin in INF2-R218Q-mediated podocytopathy. This mechanism offers new therapeutic strategies for INF2-related FSGS by using pharmacologically available proteasome inhibitors.
Collapse
Affiliation(s)
- Jillian Williquett
- Division of Nephrology, Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chandra Perez-Gill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Chantal Allamargot
- Central Microscopy Research Facility, Office of the University of Iowa Vice President for Research, The University of Iowa, Iowa City, Iowa
| | - Faith Rooney
- Division of Nephrology, Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Martin R. Pollak
- Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
3
|
Ding Y, Wu Z, Tang X, Li X. Co-occurrence of Charcot-Marie-Tooth disease type 1 and glomerulosclerosis in a patient with a de novo INF2 variant. BMC Nephrol 2024; 25:430. [PMID: 39609740 PMCID: PMC11603986 DOI: 10.1186/s12882-024-03891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Renal disease is associated with Charcot-Marie-Tooth disease (CMT), a common inherited neurological disorder. Three forms of CMT have been identified: CMT1 of the demyelinating type, CMT2 of the axonal defect type, and intermediate type (Int-CMT). INF2 is an important target for variants that cause the complex symptoms of focal segmental glomerulosclerosis (FSGS) and CMT. CASE PRESENTATION We report the case of a 13-year-old female Chinese patient (born in 2011) with a rare co-occurrence of CMT1 and glomerulosclerosis (GS) (CMT1-GS). The patient presented with slowly progressive gait disorder with unsteadiness during walking, pes cavus, and kyphoscoliosis since the age of 1 year. Electrophysiological studies and brain magnetic resonance imaging revealed demyelinating features consistent with CMT1. At 12 years of age, she was hospitalised for hypertension and dizziness; her serum albumin was 27.9 g/L, serum creatinine was 87 μmol/L, estimated glomerular filtration rate was 88.6 mL/min, and 24-h urine protein was 4.95 g. A renal biopsy showed glomerulosclerosis. Renal function deteriorated further during the follow-up period, and she received a kidney transplant at the age of 13. Whole-exome sequencing identified a de novo heterozygous c.326T > G (p.Met109Arg) variant in exon 2 of INF2. The variant was classified as "pathogenic" according to the American College of Medical Genetics and Genomics criteria. CONCLUSIONS We describe a rare clinical phenotype of CMT1-GS associated with a de novo variant of INF2. Our findings expand the phenotypic and genotypic spectrums of INF2-associated disorders.
Collapse
Affiliation(s)
- Yin Ding
- Department of Nephrology (Key Laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Zejun Wu
- Department of Nephrology (Key Laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Xuanli Tang
- Department of Nephrology (Key Laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Xianfa Li
- Department of Nephrology (Key Laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China.
| |
Collapse
|
4
|
Karthikeyan G, Viswanathan R, Shankar P, Velu KB. Familial Renal Disease with Autosomal Dominant Inheritance. Indian J Nephrol 2024; 34:674. [PMID: 39649317 PMCID: PMC11619068 DOI: 10.25259/ijn_138_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/28/2024] [Indexed: 12/10/2024] Open
Affiliation(s)
- Gurusamy Karthikeyan
- Department of Nephrology, Tirunelveli Medical College Hospital, Tirunelveli, Tamil Nadu, India
| | | | - P. Shankar
- Department of Nephrology, Tirunelveli Medical College Hospital, Tirunelveli, Tamil Nadu, India
| | - Kannan Bhaba Velu
- Department of Nephrology, Tirunelveli Medical College Hospital, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
5
|
Mitrotti A, Giliberti M, Di Leo V, di Bari I, Pontrelli P, Gesualdo L. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr Nephrol 2024; 39:1685-1707. [PMID: 37728640 PMCID: PMC11026212 DOI: 10.1007/s00467-023-06046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.
Collapse
Affiliation(s)
- Adele Mitrotti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| | - Marica Giliberti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Leo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Ighli di Bari
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Neves PD, Watanabe A, Watanabe EH, Narcizo AM, Nunes K, Lerario AM, Ferreira FM, Cavalcante LB, Wongboonsin J, Malheiros DM, Jorge LB, Sampson MG, Noronha IL, Onuchic LF. Idiopathic collapsing glomerulopathy is associated with APOL1 high-risk genotypes or Mendelian variants in most affected individuals in a highly admixed population. Kidney Int 2024; 105:593-607. [PMID: 38143038 DOI: 10.1016/j.kint.2023.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/04/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
Collapsing glomerulopathy (CG) is most often associated with fast progression to kidney failure with an incidence apparently higher in Brazil than in other countries. However, the reason for this occurrence is unknown. To better understand this, we performed an integrated analysis of clinical, histological, therapeutic, causative genetic and genetic ancestry data in a highly genetically admixed cohort of 70 children and adult patients with idiopathic CG (ICG). The disease onset occurred at 23 (interquartile range: 17-31) years and approximately half of patients progressed to chronic kidney disease requiring kidney replacement therapy (CKD-KRT) 36 months after diagnosis. Causative genetic bases, assessed by targeted-gene panel or whole-exome sequencing, were identified in 58.6% of patients. Among these cases, 80.5% harbored APOL1 high-risk genotypes (HRG) and 19.5% causative Mendelian variants (MV). Self-reported non-White patients more frequently had HRG. MV was an independent risk factor for progression to CKD-KRT by 36 months and the end of follow-up, while remission was an independent protective factor. All patients with HRG manifested CG at 9-44 years of age, whereas in those with APOL1 low-risk genotype, the disease arose throughout life. HRGs were associated with higher proportion of African genetic ancestry. Novel causative MVs were identified in COL4A5, COQ2 and PLCE1 and previously described causative MVs were identified in MYH9, TRPC6, COQ2, COL4A3 and TTC21B. Three patients displayed HRG combined with a variant of uncertain significance (ITGB4, LAMA5 or PTPRO). MVs were associated with worse kidney prognosis. Thus, our data reveal that the genetic status plays a major role in ICG pathogenesis, accounting for more than half of cases in a highly admixed Brazilian population.
Collapse
Affiliation(s)
- Precil D Neves
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Nephrology and Dialysis Center, Oswaldo Cruz German Hospital, São Paulo, Brazil
| | - Andreia Watanabe
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Pediatric Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Elieser H Watanabe
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Amanda M Narcizo
- Large-Scale Sequencing Laboratory, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome Center, Institute of Biosciences/University of São Paulo, São Paulo, Brazil
| | - Antonio M Lerario
- Division of Endocrinology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederico M Ferreira
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lívia B Cavalcante
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Janewit Wongboonsin
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Denise M Malheiros
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lectícia B Jorge
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Irene L Noronha
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
7
|
Shlomovitz O, Atias-Varon D, Yagel D, Barel O, Shasha-Lavsky H, Skorecki K, Eliyahu A, Bathish Y, Frajewicki V, Kushnir D, Zaid R, Paperna T, Ofir A, Tchirkov M, Hassan K, Kruzel E, Khazim K, Geron R, Weisman I, Hanut A, Nakhoul F, Kenig-Kozlovsky Y, Refael G, Antebi A, Storch S, Leiba M, Kagan M, Shukrun R, Rechavi G, Dekel B, Ben Moshe Y, Weiss K, Assady S, Vivante A. Genetic Markers Among the Israeli Druze Minority Population With End-Stage Kidney Disease. Am J Kidney Dis 2024; 83:183-195. [PMID: 37717846 DOI: 10.1053/j.ajkd.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023]
Abstract
RATIONALE & OBJECTIVE Genetic etiologies have been identified among approximately 10% of adults with chronic kidney disease (CKD). However, data are lacking regarding the prevalence of monogenic etiologies especially among members of minority groups. This study characterized the genetic markers among members of an Israeli minority group with end-stage kidney disease (ESKD). STUDY DESIGN A national-multicenter cross-sectional study of Israeli Druze patients (an Arabic-speaking Near-Eastern transnational population isolate) who are receiving maintenance dialysis for ESKD. All study participants underwent exome sequencing. SETTING & PARTICIPANTS We recruited 94 adults with ESKD, comprising 97% of the total 97 Druze individuals throughout Israel being treated with dialysis during the study period. PREDICTORS Demographics and clinical characteristics of kidney disease. OUTCOME Genetic markers. ANALYTICAL APPROACH Whole-exome sequencing and the relationship of markers to clinical phenotypes. RESULTS We identified genetic etiologies in 17 of 94 participants (18%). None had a previous molecular diagnosis. A novel, population-specific, WDR19 homozygous pathogenic variant (p.Cys293Tyr) was the most common genetic finding. Other monogenic etiologies included PKD1, PKD2, type IV collagen mutations, and monogenic forms of noncommunicable diseases. The pre-exome clinical diagnosis corresponded to the final molecular diagnosis in fewer than half of the participants. LIMITATIONS This study was limited to Druze individuals, so its generalizability may be limited. CONCLUSIONS Exome sequencing identified a genetic diagnosis in approximately 18% of Druze individuals with ESKD. These results support conducting genetic analyses in minority populations with high rates of CKD and for whom phenotypic disease specificity may be low. PLAIN-LANGUAGE SUMMARY Chronic kidney disease (CKD) affects many people worldwide and has multiple genetic causes. However, there is limited information on the prevalence of genetic etiologies, especially among minority populations. Our national-multicenter study focused on Israeli Druze patients. Using exome-sequencing, we identified previously undetected genetic causes in nearly 20% of patients, including a new and population-specific WDR19 homozygous pathogenic variant. This mutation has not been previously described; it is extremely rare globally but is common among the Druze, which highlights the importance of studying minority populations with high rates of CKD. Our findings provide insights into the genetic basis of end-stage kidney disease in the Israeli Druze, expand the WDR19 phenotypic spectrum, and emphasize the potential value of genetic testing in such populations.
Collapse
Affiliation(s)
- Omer Shlomovitz
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed
| | - Danit Atias-Varon
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed
| | - Dina Yagel
- Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ortal Barel
- Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel; The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hadas Shasha-Lavsky
- Azrieili Faculty of Medicine in Galilee, Bar-Ilan University, Safed, Israel; Department of Pediatric Nephrology, Galilee Medical Center, Nahariya, Israel
| | - Karl Skorecki
- Azrieili Faculty of Medicine in Galilee, Bar-Ilan University, Safed, Israel
| | - Aviva Eliyahu
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Victor Frajewicki
- Institute of Nephrology and Hypertension, Carmel Medical Center, Haifa, Israel
| | - Daniel Kushnir
- Institute of Nephrology and Hypertension, Carmel Medical Center, Haifa, Israel
| | - Rinat Zaid
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Ayala Ofir
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Marina Tchirkov
- Department of Nephrology and Hypertension, Rambam Health Care campus, Haifa, Israel
| | - Kamal Hassan
- Nephrology Unit, Galilee Medical Center, Nahariya, Israel
| | - Etty Kruzel
- Nephrology Unit, Galilee Medical Center, Nahariya, Israel
| | - Khaled Khazim
- Nephrology Unit, Galilee Medical Center, Nahariya, Israel
| | - Ronit Geron
- Nephrology Unit, Galilee Medical Center, Nahariya, Israel
| | - Irit Weisman
- Nephrology Unit, Galilee Medical Center, Nahariya, Israel
| | - Anaam Hanut
- Division of Nephrology and Hypertension Baruch Padeh Medical Center Poriya, Tiberias, Israel
| | - Farid Nakhoul
- Division of Nephrology and Hypertension Baruch Padeh Medical Center Poriya, Tiberias, Israel
| | - Yael Kenig-Kozlovsky
- Department of Nephrology and Hypertension, Rambam Health Care campus, Haifa, Israel
| | - Gery Refael
- Nephrology Unit, Mayanei HaYeshua Medical Center, Bnei Brak, Israel
| | - Alon Antebi
- Institute of Nephrology and Hypertension, Carmel Medical Center, Haifa, Israel
| | - Shimon Storch
- Nephrology and Hypertension Unit, Bnai-Zion Medical Center, Haifa, Israel
| | | | - Maayan Kagan
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed
| | - Rachel Shukrun
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed
| | - Gidi Rechavi
- Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel; The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel; Azrieili Faculty of Medicine in Galilee, Bar-Ilan University, Safed, Israel
| | - Benjamin Dekel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed; Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yishay Ben Moshe
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Suheir Assady
- Department of Nephrology and Hypertension, Rambam Health Care campus, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asaf Vivante
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Safed; Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|