1
|
Than L, Wolfe KD, Cliffel DE, Jennings GK. Drop-casted Photosystem I/cytochrome c multilayer films for biohybrid solar energy conversion. PHOTOSYNTHESIS RESEARCH 2023; 155:299-308. [PMID: 36564600 DOI: 10.1007/s11120-022-00993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
One of the main barriers to making efficient Photosystem I-based biohybrid solar cells is the need for an electrochemical pathway to facilitate electron transfer between the P700 reaction center of Photosystem I and an electrode. To this end, nature provides inspiration in the form of cytochrome c6, a natural electron donor to the P700 site. Its natural ability to access the P700 binding pocket and reduce the reaction center can be mimicked by employing cytochrome c, which has a similar protein structure and redox chemistry while also being compatible with a variety of electrode surfaces. Previous research has incorporated cytochrome c to improve the photocurrent generation of Photosystem I using time consuming and/or specialized electrode preparation. While those methods lead to high protein areal density, in this work we use the quick and facile vacuum-assisted drop-casting technique to construct a Photosystem I/cytochrome c photoactive composite film with micron-scale thickness. We demonstrate that this simple fabrication technique can result in high cytochrome c loading and improvement in cathodic photocurrent over a drop-casted Photosystem I film without cytochrome c. In addition, we analyze the behavior of the cytochrome c/Photosystem I system at varying applied potentials to show that the improvement in performance can be attributed to enhancement of the electron transfer rate to P700 sites and therefore the PSI turnover rate within the composite film.
Collapse
Affiliation(s)
- Long Than
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1604, USA
| | - Kody D Wolfe
- Interdisciplinary Materials Science and Engineering Program, Vanderbilt University, Nashville, TN, 37235-0106, USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235-1822, USA
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1604, USA.
| |
Collapse
|
2
|
Zhang L, Hao S, Dou Q, Dong T, Qi WK, Huang X, Peng Y, Yang J. Multi-Omics Analysis Reveals the Nitrogen Removal Mechanism Induced by Electron Flow during the Start-up of the Anammox-Centered Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16115-16124. [PMID: 36215419 DOI: 10.1021/acs.est.2c02181] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Significant progress in understanding the key enzymes or species of anammox has been made; however, the nitrogen removal mechanism in complex coupling systems centered on anammox remains limited. In this study, by the combination of metagenomics-metatranscriptomics analyses, the nitrogen removal in the anammox-centered coupling system that entails partial denitrification (PD) and hydrolytic acidification (HA, A-PDHA) was elucidated to be the nitrogen transformation driven by the electron generation-transport-consumption process. The results showed that a total nitrogen (TN) removal efficiency of >98%, with a TN effluence of <1 mg/L and a TN removal contribution via anammox of >98%, was achieved after 59 days under famine operation and alkaline conditions during the start-up process. Further investigation confirmed that famine operation promoted the activity of genes responsible for electron generation in anammox, and increased the abundance or expression of genes related to electron consumption. Alkaline conditions enhanced the electron generation for PD by upregulating the activity of glyceraldehyde 3-phosphate dehydrogenase and strengthened electron transfer by increasing the gene encoding quinone pool. Altogether, these variations in the electron flow led to efficient nitrogen removal. These results improve our understanding of the nitrogen removal mechanism and application of the anammox-centered coupling systems in treating nitrogen wastewater.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Wei Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Xiaowu Huang
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong515063, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd.Shandong274200, China
| |
Collapse
|
3
|
Temoçin Z. Fabrication of a κ-carrageenan-based electroactive cytochrome c multilayer thin film by an electrostatic layer-by-layer assembly. Bioelectrochemistry 2019; 129:34-41. [DOI: 10.1016/j.bioelechem.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 11/29/2022]
|
4
|
Immobilization of cytochrome c and its application as electrochemical biosensors. Talanta 2018; 176:195-207. [DOI: 10.1016/j.talanta.2017.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/19/2023]
|
5
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
6
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
7
|
Feifel SC, Kapp A, Lisdat F. Electroactive nanobiomolecular architectures of laccase and cytochrome c on electrodes: applying silica nanoparticles as artificial matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5363-5367. [PMID: 24804981 DOI: 10.1021/la500460n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fully electroactive multilayer architectures combining the redox protein cytochrome c and the enzyme laccase by the use of silica nanoparticles as artificial matrix have been constructed on gold electrodes capable of direct dioxygen reduction. Laccase form Trametes versicolor and cytochrome c from horse heart were electrostatically coimmobilized by alternate deposition with interlayers of silica nanoparticles in a multilayer fashion. The layer formation has been monitored by quartz crystal microbalance. The electrochemical properties and performance of the nanobiomolecular entities were investigated by cyclic voltammetry, indicating, that a multistep electron transfer cascade, from the electrode via cytochrome c in the layered system toward the enzyme laccase, and here to molecular dioxygen was achieved. The response of the novel architecture is based on direct electron exchange between immobilized proteins and can be tuned by the assembly process.
Collapse
Affiliation(s)
- Sven Christian Feifel
- Biosystems Technology, Institute of Applied Sciences, Technical University of Applied Sciences , 15745 Wildau, Germany
| | | | | |
Collapse
|
8
|
Silveira CM, Almeida MG. Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors. Anal Bioanal Chem 2013; 405:3619-35. [PMID: 23430181 DOI: 10.1007/s00216-013-6786-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/11/2013] [Accepted: 01/24/2013] [Indexed: 11/28/2022]
Abstract
Electrochemical mediators transfer redox equivalents between the active sites of enzymes and electrodes and, in this way, initiate bioelectrocatalytic redox processes. This has been very useful in the development of the so-called second-generation biosensors, in which they transduce a catalyzed reaction into an electrical signal. Among other pre-requisites, redox mediators must be readily oxidized and/or reduced at the electrode surface and readily interact with the biorecognition component. Small chemical compounds (e.g. ferrocene derivatives, ruthenium, or osmium complexes and viologens) are frequently used for this purpose but, lately, small redox proteins (e.g. horse heart cytochrome c) have also been used as redox partners in biosensing applications. In general, docking between two complementary proteins introduces a second level of selectivity to the biosensor and enlarges the list of compounds analyzed. Moreover, electrochemical interferences are frequently minimized owing to the small overpotentials achieved. This paper provides an overview of enzyme biosensors that are mediated by electron-transfer proteins. The paper begins with a brief discussion of mediated electrochemistry in biosensing systems and proceeds with a detailed description of relevant work on the cooperative use of redox enzymes and biological electron donors and/or acceptors.
Collapse
Affiliation(s)
- Célia M Silveira
- Requimte-Departamento de Química, Faculdade de Ciências e Tecnologia (UNL), 2829-516 Monte Caparica, Portugal
| | | |
Collapse
|
9
|
Feifel SC, Kapp A, Lisdat F. Protein Multilayer Architectures on Electrodes for Analyte Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:253-98. [DOI: 10.1007/10_2013_236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes. Bioelectrochemistry 2012; 88:97-102. [DOI: 10.1016/j.bioelechem.2012.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/24/2022]
|
11
|
Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode. Bioelectrochemistry 2012; 85:29-35. [DOI: 10.1016/j.bioelechem.2011.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/05/2011] [Accepted: 11/25/2011] [Indexed: 02/07/2023]
|
12
|
Activation of laccase bioelectrocatalysis of O2 reduction to H2O by carbon nanoparticles. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2011.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Iost RM, Crespilho FN. Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics. Biosens Bioelectron 2012; 31:1-10. [DOI: 10.1016/j.bios.2011.10.040] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
|
14
|
Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F. Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: insight in formation and kinetic behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4202-11. [PMID: 21401056 DOI: 10.1021/la104964z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Here, we report on cytochrome c/bilirubin oxidase multilayer electrodes with different cytochrome c (cyt c) forms including mutant forms of human cyt c, which exhibit different reaction rates with bilirubin oxidase (BOD) in solution. The multilayer formation via the layer-by-layer technique and the kinetic behavior of the mono (only cyt c) and biprotein (cyt c and BOD) multilayer systems are studied by SPR and cyclic voltammetry. For the layer construction, sulfonated polyaniline is used. The only cyt c containing multilayer electrodes show that the quantity of deposited protein and the kinetic behavior depend on the cyt c form incorporated. In the case of the biprotein multilayer with BOD, it is demonstrated that the catalytic signal chain from the electrode via cyt c to BOD and oxygen can be established with all chosen cyt c forms. However, the magnitude of the catalytic current as well as the kinetic behavior differ significantly. We conclude that the different cytochrome c forms affect three parameters, identified here, to be important for the functionality of the multilayer system: the amount of molecules per layer, which can be immobilized on the electrodes, the cyt c self-exchange rate, and the rate constant for the reaction with BOD.
Collapse
Affiliation(s)
- Franziska Wegerich
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Ivnitski DM, Khripin C, Luckarift HR, Johnson GR, Atanassov P. Surface characterization and direct bioelectrocatalysis of multicopper oxidases. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.07.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Scodeller P, Carballo R, Szamocki R, Levin L, Forchiassin F, Calvo EJ. Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide. J Am Chem Soc 2010; 132:11132-40. [DOI: 10.1021/ja1020487] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo Scodeller
- INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, and Saarland University, 66123 Saarbrücken, Germany
| | - Romina Carballo
- INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, and Saarland University, 66123 Saarbrücken, Germany
| | - Rafael Szamocki
- INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, and Saarland University, 66123 Saarbrücken, Germany
| | - Laura Levin
- INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, and Saarland University, 66123 Saarbrücken, Germany
| | - Flavia Forchiassin
- INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, and Saarland University, 66123 Saarbrücken, Germany
| | - Ernesto J. Calvo
- INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, and Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Lesniewski A, Niedziolka-Jonsson J, Rizzi C, Gaillon L, Rogalski J, Opallo M. Carbon ceramic nanoparticulate film electrode prepared from oppositely charged particles by layer-by-layer approach. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2009.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. MODERN TECHNIQUES FOR NANO- AND MICROREACTORS/-REACTIONS 2010. [DOI: 10.1007/12_2009_42] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Sarauli D, Tanne J, Schäfer D, Schubart IW, Lisdat F. Multilayer electrodes: Fully electroactive cyt c on gold as a part of a DNA/protein architecture. Electrochem commun 2009. [DOI: 10.1016/j.elecom.2009.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Lisdat F, Dronov R, Möhwald H, Scheller FW, Kurth DG. Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains. Chem Commun (Camb) 2009:274-83. [DOI: 10.1039/b813559b] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|