1
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
3
|
Li M, Xie P, Yu L, Luo L, Sun X. Bubble Engineering on Micro-/Nanostructured Electrodes for Water Splitting. ACS NANO 2023. [PMID: 37992209 DOI: 10.1021/acsnano.3c08831] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Bubble behaviors play crucial roles in mass transfer and energy efficiency in gas evolution reactions. Combining multiscale structures and surface chemical compositions, micro-/nanostructured electrodes have drawn increasing attention. With the aim to identify the exciting opportunities and rationalize the electrode designs, in this review, we present our current comprehension of bubble engineering on micro-/nanostructured electrodes, focusing on water splitting. We first provide a brief introduction of gas wettability on micro-/nanostructured electrodes. Then we discuss the advantages of micro-/nanostructured electrodes for mass transfer (detailing the lowered overpotential, promoted supply of electrolyte, and faster bubble growth kinetics), localized electric field intensity, and electrode stability. Following that, we outline strategies for promoting bubble detachment and directional transportation. Finally, we offer our perspectives on this emerging field for future research directions.
Collapse
Affiliation(s)
- Mengxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pengpeng Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linfeng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Raman A, Peñas P, van der Meer D, Lohse D, Gardeniers H, Fernández Rivas D. Potential response of single successive constant-current-driven electrolytic hydrogen bubbles spatially separated from the electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Taqieddin A, Allshouse MR, Alshawabkeh AN. Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2018; 165:E694-E711. [PMID: 30542215 PMCID: PMC6287757 DOI: 10.1149/2.0791813jes] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Michael R. Allshouse
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Taqieddin A, Nazari R, Rajic L, Alshawabkeh A. Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2017; 164:E448-E459. [PMID: 29731515 PMCID: PMC5935447 DOI: 10.1149/2.1161713jes] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Roya Nazari
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ljiljana Rajic
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Tawfik ME, Diez FJ. Maximizing fluid delivered by bubble‐free electroosmotic pump with optimum pulse voltage waveform. Electrophoresis 2016; 38:563-571. [DOI: 10.1002/elps.201600362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mena E. Tawfik
- Rutgers The State University of New Jersey Piscataway NJ USA
| | | |
Collapse
|
8
|
Fernández D, Maurer P, Martine M, Coey JMD, Möbius ME. Bubble formation at a gas-evolving microelectrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13065-13074. [PMID: 24694174 DOI: 10.1021/la500234r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The electrolytic production of gas bubbles involves three steps--nucleation, growth, and detachment. Here the growth of hydrogen bubbles and their detachment from a platinum microelectrode of diameter 125 μm are studied using high-speed photography and overpotential frequency spectrum (noise) analysis. The periodic release of large <800 μm bubbles--gas oscillator behavior--was often observed, with a corresponding periodic oscillation of the overpotential which is reflected as a main peak and a series of harmonics in the power spectral density. The release frequency is inversely correlated with the bubble size and hydrogen production rate. When the coalescence of bubbles at the electrode surface is inhibited, either chemically with a surfactant or ethylene glycol or hydrodynamically by magnetically induced convection, swarms of small ∼50 μm bubbles are released in an aperiodic stream. The abrupt transition from periodic to aperiodic release occurs when the surface tension falls below 70 mN m(-1). Hydrogen bubble growth is also studied on a transparent platinum thin-film electrode, where the bubble coalescence can be observed directly. It leaves sessile droplets of electrolyte within the footprint of the growing bubble, showing that the growth involves scavenging smaller bubbles from solution due to hydrogen generated directly at the electrode. A possible role of nanobubbles in the lift-off process is discussed.
Collapse
|
9
|
Tawfik M, Diez F. On the relation between onset of bubble nucleation and gas supersaturation concentration. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|