1
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
2
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
3
|
Liu Q, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Chemistry 2024; 30:e202400157. [PMID: 38520385 DOI: 10.1002/chem.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
4
|
Hamdalla TA, Alfadhli S, Khasim S, Darwish A, ElZaidia E, Al-Ghamdi S, Aljohani MM, Mahmoud ME, Seleim SM. Synthesis of novel Cu/Fe based benzene Dicarboxylate (BDC) metal organic frameworks and investigations into their optical and electrochemical properties. Heliyon 2024; 10:e25065. [PMID: 38317972 PMCID: PMC10839998 DOI: 10.1016/j.heliyon.2024.e25065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
In the recent past Metal-organic frameworks (MOFs) based thin films have demonstrated superior performance in various technological applications such as optical and optoelectronic devices, electrochemical energy storage, catalysis, and sensing. Herein we report tuning the optical performance of stable complexes using Cu and Fe metal ions with carboxylate benzene dicarboxylic (BDC), leading toward the formation of novel MOF structures. The formation of Cu-BDC and Fe-BDC were confirmed by XRD and SEM studies. The thermal stability of two MOFs was investigated, indicating that, the Cu-BDC is more stable than Fe-BDC. Further, the optical properties were investigated in the wavelength range 325-1100 nm, and the Fe-BDC exhibited greater optical transmission properties than Cu-BDC by 33 %, as investigated by Wemple-DiDomenico and Tauc models. The dispersion parameters related to optical studies for Cu-BDC were better in comparison to Fe-BDC, which could be attributed to the increase in Cu valence electrons due to an increase in the number of cations. The electrochemical behavior in terms of CV measurements shows the presence of pseudo capacitance in both Fe-BDC and Cu-BDC MOFs. The improved CV performance of Cu-BDC MOF suggests that it could be used as a storage material. This work successfully demonstrates the tailoring of optical properties related to MOF thin films through the formation of stable complexes using BDC as a potential material for the fabrication of OLED's and Solar cells. The improved CV performance suggests that these MOF based materials could be used as anodes in fabrication of batteries or supercapacitors.
Collapse
Affiliation(s)
- Taymour A. Hamdalla
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - S. Alfadhli
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Syed Khasim
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - A.A.A. Darwish
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - E.F.M. ElZaidia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt
| | - S.A. Al-Ghamdi
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Meshari M. Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohamed E. Mahmoud
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahima, 21321, Alexandria, Egypt
| | - Seleim M. Seleim
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahima, 21321, Alexandria, Egypt
| |
Collapse
|
5
|
Jin H, Zeng W, Qian W, Li L, Ji P, Li Z, He D. Fast and In-Depth Reconstruction of Two-Dimension Cobalt-Based Zeolitic Imidazolate Framework in Glucose Oxidation Processes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8151-8157. [PMID: 38306191 DOI: 10.1021/acsami.3c18585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Currently, metal-organic frameworks (MOFs) have emerged as viable candidates for enduring electrode materials in nonenzyme glucose sensing. However, given the inherent water susceptibility of MOFs and their complete self-reconstruction during the process of electrochemical oxygen evolution in alkaline conditions, we are motivated to explore the truth of MOFs catalyzing glucose oxidation. In this work, we fabricated a two-dimensional cobalt-based zeolitic imidazolate framework (ZIF-L) as the electrode material for catalyzing glucose oxidation in alkaline conditions. Our explorations revealed that while the initial glucose catalytic response varied among ZIF-L samples with differing thicknesses, the ultimate steady-state catalytic performance remained largely consistent. This phenomenon arose from the transformation of ZIF-L with distinct thicknesses into CoOOH with uniform morphological and structural characteristics during the glucose catalysis process. And in situ Raman spectroscopy elucidated the sustained equilibrium within the glucose catalytic system, wherein the dynamic interconversion between CoOOH and Co(OH)2 governs the overall process. This study contributes to an enhanced understanding of the glucose catalytic mechanism aspects of nonenzymatic glucose sensor electrode materials, offering insights that serve as inspiration for the development of advanced glucose electrode materials.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Qian
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Lun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
6
|
Karimzadeh Z, Shokri B, Morsali A. Rapid cold plasma synthesis of cobalt metal-organic framework/reduced graphene oxide nanocomposites for use as supercapacitor electrodes. Sci Rep 2023; 13:15156. [PMID: 37704648 PMCID: PMC10499990 DOI: 10.1038/s41598-023-41816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are recognized as a desirable class of porous materials for energy storage applications, despite their limited conductivity. In the present study, Co-MOF-71 was fabricated as a high-performance supercapacitor electrode at ambient temperature using a fast and straightforward, one-pot cold plasma method. A supercapacitor electrode based on Co-MOF@rGO was also synthesized by adding reduced graphene oxide (rGO) during processing to increase the capacitance retention and stability after 4000 cycles from 80 to 95.4%. The Co-MOF-71 electrode provided a specific capacitance (Cs) of 651.7 Fg-1 at 1 Ag-1, whereas the Co-MOF@rGO electrode produced a Cs value of 967.68 Fg-1 at 1 Ag-1. In addition, we fabricated an asymmetric device (Co-MOF@rGO||AC) using Co-MOF-rGO as a high-rate positive electrode and activated carbon (AC) as a negative electrode. This hybrid device has a remarkable specific energy and power density. The combination of MOFs with reduced graphene oxide (rGO) in a cold plasma environment resulted in the formation of a three-dimensional nanostructure composed of nanosheets. This nanostructure exhibited an increased number of electroactive sites, providing benefits for energy storage applications.
Collapse
Affiliation(s)
- Zeinab Karimzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, P.O. Box 1983969411, Tehran, Iran
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, P.O. Box 1983969411, Tehran, Iran.
- Faculty of Physics, Shahid Beheshti University, P.O. Box 1983969411, Tehran, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
7
|
Chernomorova MA, Myakinina MS, Zhinzhilo VA, Uflyand IE. Analytical Determination of Cephalosporin Antibiotics Using Coordination Polymer Based on Cobalt Terephthalate as a Sorbent. Polymers (Basel) 2023; 15:polym15030548. [PMID: 36771849 PMCID: PMC9919266 DOI: 10.3390/polym15030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this work, a coordination polymer based on cobalt terephthalate was obtained and characterized by elemental analysis, infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The coordination polymer was tested as a sorbent for the solid-phase extraction of cephalosporin antibiotics, including ceftriaxone, cefotaxime, and cefazolin, from aqueous solutions. The coordination polymer had a high adsorption capacity (520.0 mg/g). Antibiotics adsorption followed pseudo-second order kinetic model and the Freundlich isotherm model. The calculated thermodynamic parameters indicate a spontaneous process. The resulting coordination polymer has good stability and reusability. The possibility of separating the studied cephalosporins on a chromatographic column filled with a coordination polymer was shown. This work opens great prospects for the development and application of a coordination polymer based on cobalt terephthalate for the removal of cephalosporins from ambient water.
Collapse
|
8
|
Ghosh TK, Singh DL, Mishra V, Sahoo MK, Ranga Rao G. Design of ZIF-67 nanoflake derived NiCo-LDH/rGO hybrid nanostructures for aqueous symmetric supercapattery application under alkaline condition. NANOTECHNOLOGY 2022; 33:415402. [PMID: 35803119 DOI: 10.1088/1361-6528/ac7fa4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Well-defined polyhedral ZIF-67 metal-organic frameworks (MOFs) are usually synthesized using methanol as solvent. In this work, methanol is replaced with deionized water as a solvent to synthesize ZIF-67 MOFs with unique nanoflake morphology. The ZIF-67 nanoflakes are synthesized directly byin situmethod on reduced graphene oxide (rGO) to obtain ZIF-67/rGO-xprecursors which are further transformed into NiCo-layered double hydroxide nanocomposites (NiCo-LDH/rGO-x,x = 10, 30, 50 and 90 mg of rGO). The NiCo-LDH/rGO-xnanostructured composites are found to be excellent materials for battery type supercapacitor (supercapattery) applications. Among these samples, the NiCo-LDH/rGO-30 composite gives maximum specific capacity of 829 C g-1(1658 F g-1) at a current density of 1 A g-1and high rate capability. The as fabricated 2-electrode symmetric Swagelok deviceNiCo-LDH/rGO-30NiCo-LDH/rGO-30delivered a high energy density of 49.2 Wh kg-1and a power density of 4511 W kg-1, and enabled us to glow red, blue and white LED bulbs using three coin cells. The device can show good capacity retention even after 3000 continuous charge-discharge cycles. The NiCo-LDH/rGO-30 composite,in situderived from ZIF-67 MOF in combination with optimal amount of rGO, is an excellent material to deliver both high energy density and high power density in supercapattery devices.
Collapse
Affiliation(s)
- Tapan Kumar Ghosh
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras, Chennai-600036, India
| | - Deep Lata Singh
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras, Chennai-600036, India
| | - Vineet Mishra
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras, Chennai-600036, India
| | - Malaya K Sahoo
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras, Chennai-600036, India
| | - G Ranga Rao
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
9
|
Han Y, Cui J, Yu Y, Chao Y, Li D, Wang C, Wallace GG. Efficient Metal-Oriented Electrodeposition of a Co-Based Metal-Organic Framework with Superior Capacitive Performance. CHEMSUSCHEM 2022; 15:e202200644. [PMID: 35510800 PMCID: PMC9401579 DOI: 10.1002/cssc.202200644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Indexed: 06/14/2023]
Abstract
An efficient cathodic electrodeposition method is developed for coating Co-based metal-organic frameworks (Co-MOF) on carbon fiber cloth (CFC), a widely used substrate in energy fields. The use of a highly active Co metal surface enables nucleation and growth of Co-MOF in 3D rodlike crystal bundles. When used as a binder-free electrode (Co-MOF/CFC) for supercapacitors, it shows a high areal capacitance of 1784 mF cm-2 at 1 mA cm-2 , good cycling stability and excellent rate capability. The assembled asymmetric all-solid-state supercapacitor device (Co-MOF/CFC//AC) delivers a high energy density and power density. This work may open up an effective approach to realize the electrosynthesis of MOF films, promoting use in energy storage and conversion fields.
Collapse
Affiliation(s)
- Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteUniversity of WollongongNew South Wales2500Australia
| | - Jian Cui
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
| | - Yue Yu
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
| | - Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Dejun Li
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
| | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteUniversity of WollongongNew South Wales2500Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteUniversity of WollongongNew South Wales2500Australia
| |
Collapse
|
10
|
Afrin S, Khan MW, Haque E, Ren B, Ou JZ. Recent advances in the tuning of the organic framework materials - The selections of ligands, reaction conditions, and post-synthesis approaches. J Colloid Interface Sci 2022; 623:378-404. [PMID: 35594596 DOI: 10.1016/j.jcis.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Organic framework materials, particularly metal-organic frameworks (MOFs), graphene-organic frameworks (GOFs), and covalent organic frameworks (COFs), have led to the revolution across fields including catalysts, sensors, gas capture, and biology mainly owing to their ultra-high surface area-to-volume ratio, on-demand tunable crystal structures, and unique surface properties. While the wet chemistry routes have been the predominant synthesis approach, the crystal phase, morphological parameters, and physicochemical properties of organic framework materials are largely affected by various synthesis parameters and precursors. In this work, we specifically review the influences of synthesis parameters towards crystal structures and chemical compositions of organic framework materials, including selected ligand types and lengths, reaction temperature/solvent/reactant compositions, as well as post-synthesis modification approaches. More importantly, the subsequent impacts on the general electronic, mechanical, surface chemical, and thermal properties as well as the consequent variation in performances towards catalytic, desalination, gas sensing, and gas storage applications are critically discussed. Finally, the current challenges and prospects of organic framework materials are provided.
Collapse
Affiliation(s)
- Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
11
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
12
|
Abstract
Metal-organic frameworks (MOFs) have attracted great attention for their applications in chemical sensors mainly due to their high porosity resulting in high density of spatially accessible active sites, which can interact with the aimed analyte. Among various MOFs, frameworks constructed from group 4 metal-based (e.g., zirconium, titanium, hafnium, and cerium) MOFs, have become especially of interest for the sensors requiring the operations in aqueous media owing to their remarkable chemical stability in water. Research efforts have been made to utilize these group 4 metal-based MOFs in chemosensors such as luminescent sensors, colorimetric sensors, electrochemical sensors, and resistive sensors for a range of analytes since 2013. Though several studies in this subfield have been published especially over the past 3–5 years, some challenges and concerns are still there and sometimes they might be overlooked. In this review, we aim to highlight the recent progress in the use of group 4 metal-based MOFs in chemical sensors, and focus on the challenges, potential concerns, and opportunities in future studies regarding the developments of such chemically robust MOFs for sensing applications.
Collapse
|
13
|
Ma X, Qian K, Ejeromedoghene O, Kandawa-Schulz M, Song W, Wang Y. p-Co-BDC/AuNPs-based multiple signal amplification for ultra-sensitive electrochemical determination of miRNAs. Anal Chim Acta 2021; 1183:338979. [PMID: 34627529 DOI: 10.1016/j.aca.2021.338979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
In this work, we report AuNPs-decorated pyrolyzed Co-BDC nanosheets (p-Co-BDC/AuNPs) as high-performance electrocatalyst for developing an electrochemical platform. p-Co-BDC/AuNPs as a new electrocatalyst showed superior electrocatalytic activity towards the electrochemical oxidation of methylene blue (MB). Besides, magnetic p-Co-BDC/AuNPs can be well immobilized on the magnetic glassy carbon electrode without further assistance. The oxidation of MB can be reduced by ascorbic acid. Inspired by this phenomenon, an electrochemical biosensor was constructed based on multiple signal amplification for the diagnosis of miRNAs. Firstly, p-Co-BDC/AuNPs enhanced the electrochemical oxidation of MB. Then, strand displacement amplification reaction can form lots of double helix structure DNA to embed more MB molecules. Finally, ascorbic acid in the electrolyte was utilized to reduce the oxidation of MB and improve the electrochemical signal of MB electro-oxidation. The linear detection range for the detection of miRNAs is 100 aM to 10 nM, and the limit of detection is 86 aM. Furthermore, the constructed biosensor also displayed satisfactory selectivity, good reproducibility, and excellent recovery in the detection of real samples. We are convinced that our proposed multiple signal amplification strategy will provide more promising methods for the diagnosis of cancer.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Kun Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | | | - Wei Song
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
14
|
Hang X, Xue Y, Cheng Y, Du M, Du L, Pang H. From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorg Chem 2021; 60:13168-13176. [PMID: 34410123 DOI: 10.1021/acs.inorgchem.1c01561] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling the growth of metal-organic frameworks (MOFs) at the micro-/nanoscopic scale will result in new physical properties and novel functions into the materials without changing the chemical identities and the characteristic features of the MOFs themselves. Herein, we report a facile approach to synthesize a series of MOFs [Co-MOF, CoxNiy-MOFs (x and y represent the molar ratio of Co2+ and Ni2+ and x/y = 1:1, 1:5, 1:10, 1:15, and 1:20), and Ni-MOF] with a one-dimensional micro-/nanoscaled rod-like architecture. From Co-MOF to CoxNiy-MOFs to Ni-MOF, the diameters of the rods turn to be spindly with the increase of Ni2+ content which will facilitate the supercapacitor performances. Interestingly, Co1Ni20-MOF exhibits a highest specific capacity of 597 F g-1 at 0.5 A g-1 and excellent cycle performance (retained 93.59% after 4000 cycles) among these MOF materials owing to its micro-/nanorod structure with a smaller diameter and the synergy effect between the optimum molar ratio of Co2+ and Ni2+.
Collapse
Affiliation(s)
- Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Yadan Xue
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Yan Cheng
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Liting Du
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| |
Collapse
|
15
|
Cai X, Peng F, Luo X, Ye X, Zhou J, Lang X, Shi M. Understanding the Evolution of Cobalt-Based Metal-Organic Frameworks in Electrocatalysis for the Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:3163-3173. [PMID: 34101996 DOI: 10.1002/cssc.202100851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted increasing attention as a promising electrode material for the oxygen evolution reaction (OER). Comprehending catalytic mechanisms in the OER process is of key relevance for the design of efficient catalysts. In this study, two types of Co based MOF with different organic ligands (ZIF-67 and CoBDC; BDC=1,4-benzenedicarboxylate) are synthesized as OER electrocatalysts and their electrochemical behavior is studied in alkaline solution. Physical characterization indicates that ZIF-67, with tetrahedral Co sites, transforms into α-Co(OH)2 on electrochemical activation, which provides continuous active sites in the following oxidation, whereas CoBDC, with octahedral sites, evolves into β-Co(OH)2 through hydrolysis, which is inert for the OER. Electrochemical characterization reveals that Co sites coordinated by nitrogen from imidazole ligands (Co-N coordination) are more inclined to electrochemical activation than Co-O sites. The successive exposure and accumulation of real active sites is responsible for the gradual increase in activity of ZIF-67 in OER. This work not only indicates that CoMOFs are promising OER electrocatalysts but also provides a reference system to understand how metal coordination in MOFs affects the OER process.
Collapse
Affiliation(s)
- Xiaowei Cai
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Fei Peng
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xingyu Luo
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xuejie Ye
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Junxi Zhou
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xiaoling Lang
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan, 364000, Fujian, P. R. China
| | - Meiqin Shi
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| |
Collapse
|
16
|
A C J, R R. Electrochemical application of zirconium-based metal-organic framework. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1916527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jayasree A C
- Research and Development Centre, Bharathiar University, Coimbatore, India
| | - Ravichandran R
- PG and Research, Department of Chemistry, Dr. Ambedkar Government Arts College, Chennai, India
| |
Collapse
|
17
|
Wang K, Wang S, Liu J, Guo Y, Mao F, Wu H, Zhang Q. Fe-Based Coordination Polymers as Battery-Type Electrodes in Semi-Solid-State Battery-Supercapacitor Hybrid Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15315-15323. [PMID: 33760598 DOI: 10.1021/acsami.1c01339] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One two-dimensional Fe-based metal-organic framework (FeSC1) and one one-dimensional coordination polymer (FeSC2) have been solvothermally prepared through the reaction among FeSO4·7H2O, the tripodal ligand 4,4',4″-s-triazine-2,4,6-triyl-tribenzoate (H3TATB), and flexible secondary building blocks p/m-bis((1H-imidazole-1-yl)methyl)benzene (bib). Given that their abundant interlayer spaces and different coordination modes, two compounds have been employed as battery-type electrodes to understand how void space and different coordination modes affect their performances in three-electrode electrochemical systems. Both materials exhibit outstanding but different electrochemical performances (including distinct capacities and charge-transfer abilities) under three-electrode configurations, where the charge storage for each electrode material is mainly dominated by the diffusion-controlled section (i ∝ v0.5) through power-law equations. Additionally, the partial phase transformations to more stable FeOOH are also detected in the long-term cycling loops. After coupling with the capacitive carbon-based electrode to assemble into the semi-solid-state battery-supercapacitor-hybrid (sss-BSH) devices, the sss-FeSC1//AC BSH device delivers excellent capacitance, superior energy and power density, and longstanding endurance as well as the potential practical property.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Saier Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042 Jiangsu, P. R. China
| | - Jiadi Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Yuxuan Guo
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Feifei Mao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
18
|
Uflyand IE, Tkachev VV, Zhinzhilo VA, Dzhardimalieva GI. Study of the products of the reaction of cobalt(II) acetate with 2-iodoterephthalic acid and 1,10-phenanthroline. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1881067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Valerii V. Tkachev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation
| | - Vladimir A. Zhinzhilo
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation
- Moscow Aviation Institute (National Research University), Moscow, Russian Federation
| |
Collapse
|
19
|
Jiang D, Wei CY, Zhu ZY, Guan XH, Lu M, Zhang XJ, Wang GS. Synthesis of 3D flower-like hierarchical NiCo-LDH microspheres with boosted electrochemical performance for hybrid supercapacitors. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00613d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3D flower-like NiCo-LDH microspheres synthesized via conformal alkaline hydrolysis strategy possess superior specific capacitance and stability, and the assembled HSC exhibits prominent power/energy density and durability.
Collapse
Affiliation(s)
- Di Jiang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132000, PR China
| | - Chuan-Ying Wei
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132000, PR China
| | - Zi-Yang Zhu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132000, PR China
| | - Xiao-Hui Guan
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132000, PR China
| | - Min Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132000, PR China
| | - Xiao-Juan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Guang-Sheng Wang
- School of Chemistry, Beihang University, Beijing 100191, PR China
| |
Collapse
|
20
|
Shang X, Mei H, Li Z, Dong C, Wang Z, Xu B. Improved ionic diffusion and interfacial charge/mass transfer of ZIF-67-derived Ni–Co-LDH electrodes with bare ZIF-residual for enhanced supercapacitor performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj02201f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystallization of Ni–Co-LDH and the morphology of the hierarchical structure can be simply optimized to achieve improved ionic diffusion and reduce reaction resistance of charge/mass transfer between the electrode/electrolyte interfaces.
Collapse
Affiliation(s)
- Xiaosen Shang
- College of Petroleum Engineering
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Hao Mei
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Ziyi Li
- School of Material Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Changyin Dong
- College of Petroleum Engineering
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Zengbao Wang
- College of Petroleum Engineering
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Ben Xu
- School of Material Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- P. R. China
- Key Laboratory of Eco-chemical Engineering
| |
Collapse
|
21
|
Chang TE, Chuang CH, Kung CW. An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Sangeetha S, Krishnamurthy G, Foro S, Raj K. Energy Storage Applications of Cobalt and Manganese Metal–Organic Frameworks. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01593-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Ipadeola AK, Mwonga PV, Ray SC, Maphanga RR, Ozoemena KI. Palladium/Stannic Oxide Interfacial Chemistry Promotes Hydrogen Oxidation Reactions in Alkaline Medium. ChemElectroChem 2020. [DOI: 10.1002/celc.202000952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Patrick V. Mwonga
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Sekar C. Ray
- Department of Physics University of South Africa, Florida Campus Johannesburg 1709 South Africa
| | - Rapela R. Maphanga
- Next Generation Enterprises and Institutions Council for Scientific and Industrial Research (CSIR) P.O. Box 395 Pretoria 0001 South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
24
|
Wang K, Li Q, Ren Z, Li C, Chu Y, Wang Z, Zhang M, Wu H, Zhang Q. 2D Metal-Organic Frameworks (MOFs) for High-Performance BatCap Hybrid Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001987. [PMID: 32583970 DOI: 10.1002/smll.202001987] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Two identical layered metal-organic frameworks (MOFs) (CoFRS and NiFRS) are constructed by using flexible 1,10-bis(1,2,4-triazol-1-yl)decane as pillars and 1,4-benzenedicarboxylic acid as rigid linkers. The single-crystal structure analysis indicates that the as-synthesized MOFs possess fluctuant 2D networks with large interlayer lattices. Serving as active electrode elements in supercapacitors, both MOFs deliver excellent rate capabilities, high capacities, and longstanding endurances. Moreover, the new intermediates in two electrodes before and after long-lifespan cycling are also examined, which cannot be identified as metal hydroxides in the peer reports. After assembled into battery-supercapacitor (BatCap) hybrid devices, the NiFRS//activated carbon (AC) device displays better electrochemical results in terms of gravimetric capacitance and cycling performance than CoFRS//AC devices, and a higher energy-density value of 28.7 Wh kg-1 compared to other peer references with MOFs-based electrodes. Furthermore, the possible factors to support the distinct performances are discussed and analyzed.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639678, Singapore
| | - Qingqing Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Zhujuan Ren
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Chao Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639678, Singapore
| | - Yang Chu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Zikai Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Mingdao Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, P. R. China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639678, Singapore
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
25
|
Chuang C, Kung C. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. ELECTROANAL 2020. [DOI: 10.1002/elan.202060111] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng‐Hsun Chuang
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| | - Chung‐Wei Kung
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| |
Collapse
|
26
|
Tian D, Song N, Zhong M, Lu X, Wang C. Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1280-1291. [PMID: 31834776 DOI: 10.1021/acsami.9b16420] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rational design of metal-organic framework (MOF)-based materials with a huge specific surface area, high redox activity, and favorable conductivity is currently a hot subject for their potential usage in supercapacitor electrodes. Herein, novel bimetallic MOFs with a flowerlike nanosheet structure grown on the electrospun nanofibers (PPNF@M-Ni MOF, M = Co, Zn, Cu, Fe) have been prepared by controlling the incorporation of various types of metal ions, which display superior electrochemical performance. For example, PPNF@Co-Ni MOF possesses a large specific capacitance of 1096.2 F g-1 (specific capacity of 548.1 C g-1) at 1 A g-1 and excellent rate performance. In addition, an asymmetric solid-state device composed of PPNF@Co-Ni MOF (positive materials) and KOH-activated carbon nanofibers embedded with reduced graphene oxide (negative materials) reaches a maximum energy density of 93.6 Wh kg-1 at the power density of 1600.0 W kg-1 and long cycling life. This work may greatly advance the research toward the design of supported MOF-based electrode materials for a promising prospect in energy conversion and storage.
Collapse
Affiliation(s)
- Di Tian
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Na Song
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| |
Collapse
|
27
|
Wang KB, Bi R, Wang ZK, Chu Y, Wu H. Metal–organic frameworks with different spatial dimensions for supercapacitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05198h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent progress in MOF materials for SCs with different spatial dimensions, such as 2D MOFs, including conductive MOFs and nanosheets, and 3D MOFs, categorized as single metallic and multiple metallic MOFs, are reviewed.
Collapse
Affiliation(s)
- Kuai-Bing Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Rong Bi
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Zi-Kai Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Yang Chu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Hua Wu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| |
Collapse
|
28
|
Wang K, Lv B, Wang Z, Wu H, Xu J, Zhang Q. Two-fold interpenetrated Mn-based metal–organic frameworks (MOFs) as battery-type electrode materials for charge storage. Dalton Trans 2020; 49:411-417. [DOI: 10.1039/c9dt04101j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel interpenetrated 2-fold Mn-MOFs were successfully prepared and applied for the first time in a charge-storage field. As a result, the bulk electrodes behave as alkaline batteries and deliver high capacities of 1004 and 619 C g−1 at 1 A g−1.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Bo Lv
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Zikai Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Hua Wu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Jiangyan Xu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Qichun Zhang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore 639678
- Singapore
| |
Collapse
|
29
|
Li H, Zhang J, Yao Y, Miao X, Chen J, Tang J. Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113337. [PMID: 31610507 DOI: 10.1016/j.envpol.2019.113337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
In this work, we report on the synthesis and characterization of nanoporous bimetallic metal-organic frameworks (FeCo-BDC). Effects of synthesis time and temperature on the structures, morphology, and catalytic performance of FeCo-BDC were investigated. Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) were used to reveal the morphological and textural characteristics. The crystal structure and chemical composition of FeCo-BDC were determined by means of X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements. Interestingly, FeCo-BDC grew into the same crystal structure with different morphology in the temperature of 110-150 °C with 12-48 h. The heterogeneous catalytic activity of FeCo-BDC was tested to activate peroxydisulfate (PDS) and peroxymonosulfate (PMS) for removal of methylene blue (MB). The results found that FeCo-BDC synthesized at 150 °C with 24 h exhibited the best catalytic performance for PMS and obtained 100% of MB removal within 15 min. The abundant unsaturated metal active sites of Fe(II) and Co(II) in the skeleton of FeCo-BDC made a great contribution to the generation of sulfate () and hydroxyl radicals (OH), which resulted in the excellent performance for MB degradation.
Collapse
Affiliation(s)
- Huanxuan Li
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Jian Zhang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Yuze Yao
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Xiangrui Miao
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Jiale Chen
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China
| | - Junhong Tang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou 310018, PR China.
| |
Collapse
|
30
|
|
31
|
Denis DK, Wang Z, Sun X, Zaman FU, Zhang J, Hou L, Li J, Yuan C. Formation of Nanodimensional NiCoO 2 Encapsulated in Porous Nitrogen-Doped Carbon Submicrospheres from a Bimetallic (Ni, Co) Organic Framework toward Efficient Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32052-32061. [PMID: 31407882 DOI: 10.1021/acsami.9b11822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, rock-salt NiCoO2 (NCO) with desirable electronic conductivity has drawn enormous interest worldwide for energy-related applications. However, the intrinsically sluggish kinetics and electrode aggregation/volumetric change/pulverization during Li-insertion/-extraction processes hugely limit its applications in Li-ion batteries (LIBs). In the contribution, we first devise a bottom-up method for scalable fabrication of the nanodimensional NCO particles encapsulated in porous nitrogen-doped carbon submicrospheres (NCS), which are derived from a bimetal (Ni, Co) metal-organic framework. The porous NCS, as a flexible conductive skeleton, can buffer distinct volume expansion as an efficient buffering phase, restrain agglomeration of nanoscaled NCO, and enhance electronic conductivity and wettability of the electrode. Benefiting from the synergistic functions between the nanodimensional NCO and porous NCS, the obtained NCO@NCS anode (∼74.5 wt % NCO) is endowed with remarkable high-rate reversible capacity (∼403.0 mAh g-1 at 1.0 A g-1) and cycling behaviors (∼371.4 mAh g-1 after being cycled for 1000 times at 1.0 A g-1) along with a high lithium diffusion coefficient and remarkable pseudocapacitive contribution. Furthermore, the NCO@NCS-based full LIBs exhibit competitive lithium-storage properties in terms of energy density (∼217.0 Wh kg-1) and cyclic stability. Furthermore, we believe that the methodology is highly promising in versatile design and construction of binary metal oxide/carbon hybrid anodes for advanced LIBs.
Collapse
Affiliation(s)
- Dienguila Kionga Denis
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Zhengluo Wang
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Xuan Sun
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Fakhr Uz Zaman
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Jinyang Zhang
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Linrui Hou
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Jia Li
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Changzhou Yuan
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 , P. R. China
| |
Collapse
|
32
|
Xiao Z, Mei Y, Yuan S, Mei H, Xu B, Bao Y, Fan L, Kang W, Dai F, Wang R, Wang L, Hu S, Sun D, Zhou HC. Controlled Hydrolysis of Metal-Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors. ACS NANO 2019; 13:7024-7030. [PMID: 31120727 DOI: 10.1021/acsnano.9b02106] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pseudomorphic conversion of metal-organic frameworks (MOFs) enables the fabrication of nanomaterials with well-defined porosities and morphologies for enhanced performances. However, the commonly reported calcination strategy usually requires high temperature to pyrolyze MOF particles and often results in uncontrolled growth of nanomaterials. Herein, we report the controlled alkaline hydrolysis of MOFs to produce layered double hydroxide (LDH) while maintaining the porosity and morphology of MOF particles. The preformed trinuclear M3(μ3-OH) (M = Ni2+ and Co2+) clusters in MOFs were demonstrated to be critical for the pseudomorphic transformation process. An isotopic tracing experiment revealed that the 18O-labeled M3(μ3-18OH) participated in the structural assembly of LDH, which avoided the leaching of metal cations and the subsequent uncontrolled growth of hydroxides. The resulting LDHs maintain the spherical morphology of MOF templates and possess a hierarchical porous structure with high surface area (BET surface area up to 201 m2·g-1), which is suitable for supercapacitor applications. As supercapacitor electrodes, the optimized LDH with the Ni:Co molar ratio of 7:3 shows a high specific capacitance (1652 F·g-1 at 1 A·g-1) and decent cycling performance, retaining almost 100% after 2000 cycles. Furthermore, the hydrolysis method allows the recycling of organic ligands and large-scale synthesis of LDH materials.
Collapse
Affiliation(s)
- Zhenyu Xiao
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Yingjie Mei
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Shuai Yuan
- Department of Chemistry, Materials Science and Engineering , Texas A&M University , College Station , Texas 77842-3012 , United States
| | - Hao Mei
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Ben Xu
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Yuxiang Bao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Lili Fan
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Wenpei Kang
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Fangna Dai
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Rongmign Wang
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Songqing Hu
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Daofeng Sun
- School of Materials Science and Engineering , China University of Petroleum (East China) , Qingdao Shandong 266580 , People's Republic of China
| | - Hong-Cai Zhou
- Department of Chemistry, Materials Science and Engineering , Texas A&M University , College Station , Texas 77842-3012 , United States
| |
Collapse
|
33
|
Abstract
Metal–organic frameworks (MOFs) are a class of porous materials constructed from metal-rich inorganic nodes and organic linkers. Because of their regular porosity in microporous or mesoporous scale and periodic intra-framework functionality, three-dimensional array of high-density and well-separated active sites can be built in various MOFs; such characteristics render MOFs attractive porous supports for a range of catalytic applications. Furthermore, the electrochemically addressable thin films of such MOF materials are reasonably considered as attractive candidates for electrocatalysis and relevant applications. Although it still constitutes an emerging subfield, the use of MOFs and relevant materials for electrocatalytic applications has attracted much attention in recent years. In this review, we aim to focus on the limitations and commonly seen issues for utilizing MOFs in electrocatalysis and the strategies to overcome these challenges. The research efforts on utilizing MOFs in a range of electrocatalytic applications are also highlighted.
Collapse
|
34
|
Qian Q, Li Y, Liu Y, Yu L, Zhang G. Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foam-Like Trimetal-Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901139. [PMID: 30972836 DOI: 10.1002/adma.201901139] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/21/2019] [Indexed: 05/19/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted tremendous interest due to their promising applications including electrocatalysis originating from their unique structural features. However, it remains a challenge to directly use MOFs for oxygen electrocatalysis because it is quite difficult to manipulate their dimension, composition, and morphology of the MOFs with abundant active sites. Here, a facile ambient temperature synthesis of unique NiCoFe-based trimetallic MOF nanostructures with foam-like architecture is reported, which exhibit extraordinary oxygen evolution reaction (OER) activity as directly used catalyst in alkaline condition. Specifically, the (Ni2 Co1 )0.925 Fe0.075 -MOF-NF delivers a minimum overpotential of 257 mV to reach the current density of 10 mA cm-2 with a small Tafel slope of 41.3 mV dec-1 and exhibits high durability after long-term testing. More importantly, the deciphering of the possible origination of the high activity is performed through the characterization of the intermediates during the OER process, where the electrochemically transformed metal hydroxides and oxyhydroxides are confirmed as the active species.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yapeng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lai Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, China
| |
Collapse
|
35
|
Zhang S, Yang Z, Gong K, Xu B, Mei H, Zhang H, Zhang J, Kang Z, Yan Y, Sun D. Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH) 2 supercapacitor electrodes. NANOSCALE 2019; 11:9598-9607. [PMID: 31063163 DOI: 10.1039/c9nr02555c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conformal hydrolysis of MOF precursors is a promising strategy to prepare hierarchical metal hydroxide electrode materials on a large scale with low cost and high efficiency. However, a complete transformation is challenging due to the normal "outside-in" conversion process. After studying the hydrolysis of Ni-MOF-74, which has regular 1D channels, we suggest that the transformation to Ni(OH)2 can occur simultaneously outside and within the precursor depending on the treatment temperature. Molecular dynamics simulations reveal that a higher temperature weakens the steric effects of OH- ions and facilitates the diffusion in the regular channels, and therefore, a complete transformation from Ni-MOF-74 to Ni(OH)2 is achieved. It is for the first time demonstrated that the 1D channels of MOFs are utilized for the complete conformal hydrolysis of Ni-MOF-74 to Ni(OH)2 electrode materials. Meanwhile, we also perform pioneering work illustrating that the complete conformal hydrolysis is the key to the improved supercapacitor performances of the MOF-derived Ni(OH)2 electrodes. The prepared Ni(OH)2 electrode under the optimized conditions has a specific capacity of 713.2 C g-1 at a current density of 1 A g-1, which is at least 28% larger than those of the Ni(OH)2 prepared at other temperatures. The detailed analyses based on CV and EIS of the obtained Ni(OH)2 electrodes indicate that the residual MOFs within electrodes due to incomplete hydrolysis significantly influence the diffusion length and diffusion efficiency of OH-, drastically lowering the supercapacitor performances.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sundriyal S, Shrivastav V, Sharma M, Mishra S, Deep A. Redox Additive Electrolyte Study of Mn–MOF Electrode for Supercapacitor Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900305] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shashank Sundriyal
- Academy of Scientific and Innovative Research (AcSIR-CSIO) Chandigarh 160030 India
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) Chandigarh 160030 India
| | - Vishal Shrivastav
- Academy of Scientific and Innovative Research (AcSIR-CSIO) Chandigarh 160030 India
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) Chandigarh 160030 India
| | - Meenu Sharma
- Department of PhysicsNational Institute of Technology Kurukshetra, Haryana India
| | - Sunita Mishra
- Academy of Scientific and Innovative Research (AcSIR-CSIO) Chandigarh 160030 India
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) Chandigarh 160030 India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR-CSIO) Chandigarh 160030 India
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) Chandigarh 160030 India
| |
Collapse
|
37
|
Three-dimensional PEDOT composite based electrochemical sensor for sensitive detection of chlorophenol. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Yao M, Zhao X, Zhang J, Tan W, Luo J, Dong J, Zhang Q. Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs. NANOTECHNOLOGY 2019; 30:085404. [PMID: 30523920 DOI: 10.1088/1361-6528/aaf520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous carbons derived from metal-organic frameworks (MOFs) are promising materials for a number of energy- and environment-related applications. To integrate the powder MOFs-derived carbon into feasible engineered materials, a facile strategy to fabricate integrated flexible film is developed by growing MOFs nanoparticles on polyimide electrospun nanofibers, followed by calcination, to fabricate freestanding carbon nanofiber membranes decorated with porous carbon. Then vertically polyaniline nanowire arrays are uniformly deposited on the hierarchical porous carbon substrates by in situ polymerization. Thanks to the good distribution of MOFs-derived porous carbon on carbon nanofibers and the compact configuration interwoven by conducting polymers, the designed hybrid electrode could be used directly as a freestanding electrode for supercapacitors, which displayed a high specific capacitance of 1268 F g-1. The assembled flexible solid-state supercapacitor based on the integrated electrodes demonstrated a high volumetric capacitance of 1973 mF cm-3 and a good capacitance retention of 84.9% after 10 000 cycles, which could power a commercial light emitting diode. This strategy may shed light on the design of MOFs-based flexible materials for practical applications of supercapacitors and other electrochemical devices.
Collapse
Affiliation(s)
- Mengyao Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Han W, Dong F, Han W, Tang Z. Fabrication of homogeneous and highly dispersed CoMn catalysts for outstanding low temperature catalytic oxidation performance. NEW J CHEM 2019. [DOI: 10.1039/c9nj03450a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of homogeneous and highly dispersed CoMnOx bimetallic oxides with different ratios were prepared through pyrolysis of CoMn-MOF-71, which was applied to the catalytic oxidation of toluene.
Collapse
Affiliation(s)
- Weigao Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Weiliang Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
40
|
Goldman A, Nardin K, Höfert SP, Millan S, Janiak C. Two-dimensional Cobalt-Carboxylate Framework with Hourglass Trinuclear Co 3
(COO) 6
(DMA) 3
Secondary Building Unit. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Goldman
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Katharina Nardin
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Simon-Patrick Höfert
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Simon Millan
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; 40204 Düsseldorf Germany
| |
Collapse
|
41
|
Research Progresses in the Preparation of Co-based Catalyst Derived from Co-MOFs and Application in the Catalytic Oxidation Reaction. CATALYSIS SURVEYS FROM ASIA 2018. [DOI: 10.1007/s10563-018-9258-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
|
43
|
Xiao Z, Xu B, Zhang S, Yang Z, Mei Y, Fan W, Zhang M, Zhang L, Sun D. Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.173] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Cendrowski K, Zenderowska A, Bieganska A, Mijowska E. Graphene nanoflakes functionalized with cobalt/cobalt oxides formation during cobalt organic framework carbonization. Dalton Trans 2018; 46:7722-7732. [PMID: 28561843 DOI: 10.1039/c7dt01048f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we present the synthesis and carbonization mechanism of metal-organic frameworks (MOFs) based on cobalt and terephthalic acid, with detailed attention to the carbonization mechanism of cobalt-based organic frameworks. The evolution of the unique morphology of carbonized cobalt organic frameworks induced by temperature allows the synthesis of a hybrid of multi-layered carbon structures with metal and metal oxide nanoparticles placed between them. The formation of various phases and diameter distributions of cobalt nanoparticles resulted in the partial degradation of carbon structure and exfoliation. Presented data describe the connection between cobalt particle oxidation and carboreduction with the phenomenon of metal particle agglomeration. The presented study allows us to select carbonization conditions in order to obtain the desired cobalt crystalline structure on the graphene flakes from cobalt-based MOFs.
Collapse
Affiliation(s)
- Krzysztof Cendrowski
- Nanomaterials Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland.
| | | | | | | |
Collapse
|
45
|
Zhang H, Xu B, Xiao Z, Mei H, Zhang L, Han Y, Sun D. Optimizing crystallinity and porosity of hierarchical Ni(OH)2 through conformal transformation of metal–organic framework template for supercapacitor applications. CrystEngComm 2018. [DOI: 10.1039/c8ce00741a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conformal hydrolysis of MOFs (metal–organic frameworks) yields high-performance supercapacitor electrodes.
Collapse
Affiliation(s)
- Haobing Zhang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Ben Xu
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Zhenyu Xiao
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Hao Mei
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Liangliang Zhang
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Yinfeng Han
- Department of Chemical and Chemical Engineering
- Taishan University
- P. R. China
| | - Daofeng Sun
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| |
Collapse
|
46
|
Li X, Xiao X, Li Q, Wei J, Xue H, Pang H. Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00434f] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the ever increasing demand for clean, sustainable energy, electrochemical supercapacitors with the advantages of high power density, high efficiency and long life expectancy have become one of the major devices for energy storage and power supply, and have found wide application in hybrid power sources, backup power sources, starting power for fuel cells and burst-power generation in electronic devices.
Collapse
Affiliation(s)
- Xinran Li
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xiao Xiao
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University
- Yangzhou
- P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University
- Yangzhou
- P. R. China
| | - Jilei Wei
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University
- Yangzhou
- P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University
- Yangzhou
- P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering
- Institute for Innovative Materials and Energy
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
47
|
Mehek R, Iqbal N, Noor T, Nasir H, Mehmood Y, Ahmed S. Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.164] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Arul P, Abraham John S. Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: A non-enzymatic sensor for glucose. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Xiong X, Zhou L, Cao W, Liang J, Wang Y, Hu S, Yu F, Li B. Metal–organic frameworks based on halogen-bridged dinuclear-Cu-nodes as promising materials for high performance supercapacitor electrodes. CrystEngComm 2017. [DOI: 10.1039/c7ce01840a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two halogen-bridged di-nuclear Cu-based 3D porous frameworks present high specific capacitance and good cycling stability.
Collapse
Affiliation(s)
- Xin Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Liuyin Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Wenjie Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Jiyuan Liang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Yazhen Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Siqian Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Fan Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering Jianghan University
- Wuhan
- PR China
| | - Bao Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
- PR China
| |
Collapse
|
50
|
Bifunctional N-Doped Co@C Catalysts for Base-Free Transfer Hydrogenations of Nitriles: Controllable Selectivity to Primary Amines vs Imines. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02327] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|