1
|
Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem 2023; 415:1065-1085. [PMID: 36289102 DOI: 10.1007/s00216-022-04388-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.
Collapse
|
2
|
Kim TY, Lim MC, Lim JW, Woo MA. Rolling Circle Amplification-based Copper Nanoparticle Synthesis on Cyclic Olefin Copolymer Substrate and Its Application in Aptasensor. BIOTECHNOL BIOPROC E 2022; 27:202-212. [PMID: 35474695 PMCID: PMC9026004 DOI: 10.1007/s12257-021-0220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to develop a label-free fluorescent aptasensor for the detection of diazinon (DZN) on a cyclic olefin copolymer (COC) substrate. The aptasensor design was based on rolling circle amplification (RCA) technology and the use of self-assembled copper nanoparticles (CuNPs). A dual-function (DF) probe, capable of binding to circular DNA and an aptamer, was designed and immobilized on a COC-bottom 96-well plate. An aptamer was used for selective recognition of DZN, and the specific site of the aptamer that strongly reacted with DZN was successfully identified using circular dichroism (CD) analysis. In presence of DZN, the aptamer and DZN formed a strong complex, thus providing an opportunity for hybridization of the DF probe and circular DNA, thereby initiating an RCA reaction. Repetitive poly thymine (T) sequence with a length of 30-mer, generated in the RCA reaction, served as a template for the synthesis of fluorescent copper nanoparticles, emitting an orange fluorescence signal (at approximately 620 nm) proportional to the amount of RCA product, within 10 min under UV irradiation. The CuNP fluorescence was imaged and quantified using an image analysis software. A linear correlation of the fluorescence signal was confirmed in the DZN concentration range of 0.1–3 ppm, with a detection limit of 0.15 ppm. Adoption of a label-free detection method, utilizing RCA and fluorescent CuNPs on COC substrates, reduced the need for complex equipment and requirements for DZN analysis, thereby representing a simple and rapid sensing method circumventing the limitations of current complex and labor-intensive methods.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| | - Ji Won Lim
- The 4th R&D Institute, 6th Directorate, Agency for Defense Development, Daejeon, Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| |
Collapse
|
3
|
Thapa K, Liu W, Wang R. Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1765. [PMID: 34734485 DOI: 10.1002/wnan.1765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
With the increasing importance of accurate and early disease diagnosis and the development of personalized medicine, DNA-based electrochemical biosensor has attracted broad scientific and clinical interests in the past decades due to its unique hybridization specificity, fast response time, and potential for miniaturization. In order to achieve high detection sensitivity, the design of DNA electrochemical biosensors depends critically on the improvement of the accessibility of target molecules and the enhancement of signal readout. Here, we summarize the recent advances in DNA probe immobilization and signal amplification strategies with a special focus on DNA nanostructure-supported DNA probe immobilization method, which provides the opportunity to rationally control the distance between probes and keep them in upright confirmation, as well as the contribution of functional nanomaterials in enhancing the signal amplification. The next challenge of biosensors will be the fabrication of point-of-care devices for clinical testing. The advancement of multidisciplinary areas, including nanofabrication, material science, and biochemistry, has exhibited profound promise in achieving such portable sensing devices. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Krishna Thapa
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA.,Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
4
|
Tran HV, Piro B. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Mikrochim Acta 2021; 188:128. [PMID: 33740140 DOI: 10.1007/s00604-021-04784-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The biology of the late twentieth century was marked by the discovery in 1993 of a new class of small non-coding ribonucleic acids (RNAs) which play major roles in regulating the translation and degradation of messenger RNAs. These small RNAs (18-25 nucleotides), called microRNAs (miRNAs), are implied in several biological processes such as differentiation, metabolic homeostasis, or cellular apoptosis and proliferation. The discovery in 2008 that the presence of miRNAs in body fluids could be correlated with cancer (prostate, breast, colon, lung, etc.) or other diseases (diabetes, heart diseases, etc.) has made them new key players as biomarkers. Therefore, miRNA detection is of considerable significance in both disease diagnosis and in the study of miRNA function. Until these days, more than 1200 miRNAs have been identified. However, traditional methods developed for conventional DNA does not apply satisfactorily for miRNA, in particular due to the low expression level of these miRNA in biofluids, and because they are very short strands. Electrochemical biosensors can provide this sensitivity and also offer the advantages of mass fabrication, low-cost, and potential decentralized analysis, which has wide application for microRNAs sensing, with many promising results already reported. The present review summarizes some newly developed electrochemical miRNA detection methods.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, Hanoi, Vietnam.
| | - Benoit Piro
- ITODYS, CNRS, Université de Paris, F-75006, Paris, France
| |
Collapse
|
5
|
Abramova AM, Goryacheva OA, Drozd DD, Novikova AS, Ponomareva TS, Strokin PD, Goryacheva IY. Luminescence Semiconductor Quantum Dots in Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821030023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Wang J, Wen J, Yan H. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing. Chem Asian J 2020; 16:114-128. [DOI: 10.1002/asia.202001260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jiameng Wang
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Jia Wen
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
- College of Public Health Hebei University Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Baoding 071002 P. R. China
| |
Collapse
|
7
|
Sun J, Sun X. Recent advances in the construction of DNA nanostructure with signal amplification and ratiometric response for miRNA sensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Trinh MP, Carballo JG, Adkins GB, Guo K, Zhong W. Physical and chemical template-blocking strategies in the exponential amplification reaction of circulating microRNAs. Anal Bioanal Chem 2020; 412:2399-2412. [PMID: 32072213 PMCID: PMC7141974 DOI: 10.1007/s00216-020-02496-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
The detection of circulating miRNA through isothermal amplification wields many attractive advantages over traditional methods, such as reverse transcription RT-qPCR. However, it is challenging to control the background signal produced in the absence of target, which severely hampers applications of such methods for detecting low abundance targets in complex biological samples. In the present work, we employed both the cobalt oxyhydroxide (CoOOH) nanoflakes and the chemical modification of hexanediol to block non-specific template elongation in exponential amplification reaction (EXPAR). Adsorption by the CoOOH nanoflakes and the hexanediol modification at the 3' end effectively prevented no-target polymerization on the template itself and thus greatly improved the performance of EXPAR, detecting as low as 10 aM of several miRNA targets, including miR-16, miR-21, and miR-122, with the fluorescent DNA staining dye of SYBR Gold™. Little to no cross-reactivity was observed from the interfering strands present in 10-fold excess. Besides contributing to background reduction, the CoOOH nanoflakes strongly adsorbed nucleic acids and isolated them from a complex sample matrix, thus permitting successful detection of the target miRNA in the serum. We expect that simple but sensitive template-blocking EXPAR could be a valuable tool to help with the discovery and validation of miRNA markers in biospecimens. Graphical abstract.
Collapse
Affiliation(s)
- Michael P Trinh
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jocelyn G Carballo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Gary B Adkins
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Kaizhu Guo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Sheervalilou R, Shahraki O, Hasanifard L, Shirvaliloo M, Mehranfar S, Lotfi H, Pilehvar-Soltanahmadi Y, Bahmanpour Z, Zadeh SS, Nazarlou Z, Kangarlou H, Ghaznavi H, Zarghami N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med 2019; 20:13-35. [DOI: 10.2174/1566524019666191001114941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In both men and women around the world, lung cancer accounts as the
principal cause of cancer-related death after breast cancer. Therefore, early detection of
the disease is a cardinal step in improving prognosis and survival of patients. Today, the
newly-defined microRNAs regulate about 30 to 60 percent of the gene expression.
Changes in microRNA Profiles are linked to numerous health conditions, making them
sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation
of microRNAs in real samples has proved to be rather challenging, which is largely
attributable to the unique characteristics of these molecules. Short length, sequence
similarity, and low concentration stand among the factors that define microRNAs.
Recently, diagnostic technologies with a focus on wide-scale point of care have recently
garnered attention as great candidates for early diagnosis of cancer. Electrochemical
nano-biosensors have recently garnered much attention as a molecular method,
showing great potential in terms of sensitivity, specificity and reproducibility, and last but
not least, adaptability to point-of-care testing. Application of nanoscale materials in
electrochemical devices as promising as it is, brings multiplexing potential for conducting
simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling
properties, these materials can be used to improve the efficiency of cancer diagnostics,
offer more accurate predictions of prognosis, and monitor response to therapy in a more
efficacious way. This article presents a concise overview of recent advances in the
expeditiously evolving area of electrochemical biosensors for microRNA detection in
lung cancer.
Collapse
Affiliation(s)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Hasanifard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Sarraf Zadeh
- Neurosciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey
| | - Haleh Kangarlou
- Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Sabahi A, Salahandish R, Ghaffarinejad A, Omidinia E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta 2019; 209:120595. [PMID: 31892044 DOI: 10.1016/j.talanta.2019.120595] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) appear as a novel reliable candidate in biomarkers for early diagnosis of cancer. Due to their roles in various types of cancer, their potential as a diagnostic biomarker is getting more attention. Here, a novel electrochemical biosensor for detection of miR-21 was demonstrated, through combining the advantages of electrochemical methods and nanomaterials with the selectivity of oligonucleotides, based on thiolated receptor probe-functionalized dendritic gold nanostructures (den-Au) via the self-assembly monolayer (SAM) process which grafted on the single-wall carbon nanotubes (SWCNTs) platform on the surface of the fluorine-doped tin oxide (FTO) electrode. Cadmium ions (Cd2+) were used as signal units and also signal amplification substance which labeled before on miR-21 target. The oxidation signal of Cd2+ as a signal unit was measured by differential pulse voltammetry (DPV) technique that had a very wide linear relationship with the concentration of miR-21 target (0.01 fmol L-1 to 1 μmol L-1) and low experimental detection limit of 0.01 fmol L-1. Furthermore, fabricated biosensor showed acceptable performance in human serum samples and also good selectivity indiscriminate between the complementary target and non-complementary one, so this nano-genosensor can clinically be used for prostate cancer diagnosis through the detection of miR-21 in human serum samples.
Collapse
Affiliation(s)
- Abbas Sabahi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Razieh Salahandish
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Eskandar Omidinia
- Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, 13164, Iran.
| |
Collapse
|
11
|
Mahani M, Mousapour Z, Divsar F, Nomani A, Ju H. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Mikrochim Acta 2019; 186:132. [PMID: 30707293 DOI: 10.1007/s00604-019-3233-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/04/2019] [Indexed: 01/12/2023]
Abstract
A carbon quantum dot (CQD) labeled molecular beacon was synthesized and applied to the detection of microRNA-21. The CQDs possess low cytotoxicity, excellent water solubility, and photostability. The CQDs were characterized by transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The molecular beacon (MB) was labeled with the CQDs at the 5' end, and with Black Hole Quencher 1 (BHQ1) at the 3' end. The two labels act as the donor and acceptor parts of a FRET system, respectively. Only weak fluorescence is observed in the absence of microRNA-21, and in the presence of scrambled or mismatched sequences. However, in the presence of microRNA-21, fluorescence intensity of the CQDs at 460 nm (excitation at 360 nm) recovers. The hybridization of the hairpin structure of the MB with microRNA-21 opens the loop of MB. Consequently, the distance between the BHQ1 quencher and the CQDs is increased and fluorescence changes. The probe has high sensitivity (with a 0.3 nM limit of detection) and specificity. It can distinguish between microRNA-21 and its single mismatch mutant and hence represents a valuable tool for the early cancer diagnosis. Graphical abstract Schematic presentation of a fluorometric microR-21 assay using carbon dots carrying a molecular beacon (MB) labeled with a black hole quencher. Quenching is suppressed once the MB binds to microRNA-21.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Zhahra Mousapour
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University, P. O. BOX: 19395-3197, Tehran, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
12
|
Wang Y, Howes PD, Kim E, Spicer CD, Thomas MR, Lin Y, Crowder SW, Pence IJ, Stevens MM. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot-DNA Conjugates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28290-28300. [PMID: 30113161 PMCID: PMC6141140 DOI: 10.1021/acsami.8b07250] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/31/2018] [Indexed: 05/18/2023]
Abstract
Advances in nanotechnology have provided new opportunities for the design of next-generation nucleic acid biosensors and diagnostics. Indeed, combining advances in functional nanoparticles, DNA nanotechnology, and nuclease-enzyme-based amplification can give rise to new assays with advantageous properties. In this work, we developed a microRNA (miRNA) assay using bright fluorescent quantum dots (QDs), simple DNA probes, and the enzyme duplex-specific nuclease. We employed an isothermal target-recycling mechanism, where a single miRNA target triggers the cleavage of many DNA signal probes. The incorporation of DNA-functionalized QDs enabled a quantitative fluorescent readout, mediated by Förster resonance energy transfer (FRET)-based interaction with the DNA signal probes. Our approach splits the reaction in two, performing the enzyme-mediated amplification and QD-based detection steps separately such that each reaction could be optimized for performance of the active components. Target recycling gave ca. 3 orders of magnitude amplification, yielding highly sensitive detection with a limit of 42 fM (or 1.2 amol) of miR-148, with excellent selectivity versus mismatched sequences and other miRNAs. Furthermore, we used an alternative target (miR-21) and FRET pair for direct and absolute quantification of miR-21 in RNA extracts from human cancer and normal cell lines.
Collapse
Affiliation(s)
- Ye Wang
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | | | - Eunjung Kim
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | | | - Michael R. Thomas
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Yiyang Lin
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Spencer W. Crowder
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Isaac J. Pence
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department of Materials, Department of
Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
13
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem 2018; 411:1791-1806. [DOI: 10.1007/s00216-018-1273-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
|
14
|
Goryacheva OA, Mishra PK, Goryacheva IY. Luminescent quantum dots for miRNA detection. Talanta 2018; 179:456-465. [PMID: 29310260 DOI: 10.1016/j.talanta.2017.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in nearly all developmental processes and human pathologies. MiRNAs are considered to be promising biomarkers, since their dysregulation correlates with the development and progress of many diseases. Short length, sequence homology among family members, susceptibility to degradation, and low abundance in total RNA samples make miRNA analysis a challenging task. Photoluminescent semiconductor nanoparticles (quantum dots, QDs) possess unique properties such as bright photoluminescence, photostability and narrow emission peaks, wide possibilities for surface modification and bioconjugation, which serve as the basis for the development of different analytical methods for variety of analytes. Relatively small size of QDs' and their narrow distribution are especially important for miRNA assay. The combination of QD-based biosensors with amplification techniques makes it possible to identify the target miRNA at a single-particle level with the detection limit at the attomolar scale. This review describes the principles of signal generation: direct intensity measurements, different "signal on" and "signal off" mechanisms as well as electro-chemiluminescence. Special attention is paid to the FRET-based techniques. According to our knowledge this is the first review related to QDs application for miRNA detection.
Collapse
Affiliation(s)
- O A Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia
| | - P K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - I Yu Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia.
| |
Collapse
|
15
|
Zhang B, Wang Q, Wu J, Chen Y, Wang J. Detection of nucleic acids with a novel stem-loop primer rolling circle amplification technique. Biotechniques 2018; 64:69-80. [PMID: 29571284 DOI: 10.2144/btn-2017-0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/19/2018] [Indexed: 11/23/2022] Open
Abstract
This paper presents a new rolling circle amplification (RCA) technique using stem-loop primers (SLP). The technique enables detection of target DNA by either linear or exponential amplification (SLP-lRCA and SLP-eRCA) in both liquid and solid phases. For solid-phase detection, SLP-eRCA detects nucleic acids in four steps: (1) covalently immobilize an array of capture probes (CP) on a solid support; (2) hybridize the CP array with the DNA sample; (3) incubate the CP array with an RCA reaction containing two SLPs; (4) image the CP array. SLP-eRCA detects nucleic acids in liquid phase in one step: a real-time RCA reaction containing the DNA sample and two SLPs. Both liquid- and solid-phase detection methods employ a general rolling circle and an SLP. The other SLP is specific to the target. The technique was verified by detecting synthesized oligonucleotides and six different human papillomaviruses (HPVs), both in liquid phase and on a solid surface. The technique also detected two high-risk HPVs (HPV16 and HPV18) in cervical carcinoma cells (HeLa and SiHa) and clinical samples. This study provides proof-of-concept for the new RCA technique for nucleic acid detection, which overcomes major limitations of current RCA approaches.
Collapse
Affiliation(s)
- Beibei Zhang
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Qiao Wang
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| | - Yin Chen
- School of Medical Technology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, 210096, Nanjing, China
| |
Collapse
|
16
|
Kokkinos C, Economou A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review. Anal Chim Acta 2017; 961:12-32. [DOI: 10.1016/j.aca.2017.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
|
17
|
Adegoke O, Park EY. The use of nanocrystal quantum dot as fluorophore reporters in molecular beacon-based assays. NANO CONVERGENCE 2016; 3:32. [PMID: 28191442 PMCID: PMC5271166 DOI: 10.1186/s40580-016-0094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 05/24/2023]
Abstract
The utilization of molecular beacon (MB) biosensor probes to detect nucleic acid targets has received enormous interest within the scientific community. This interest has been stimulated by the operational qualities of MB-based probes with respect to their unique sensitivity and specificity. The design of MB biosensors entails not only optimizing the sequence of the loop to hybridize with the nucleic acid target or optimization of the length of the stem to tune the sensitivity but also the selection of the appropriate fluorophore reporter to generate the signal transduction read-out upon hybridization of the probe with the target sequence. Traditional organic fluorescent dyes are mostly used for signal reporting in MB assays but their optical properties in comparison to semiconductor fluorescent quantum dot (Qdot) nanocrystals are at a disadvantage. This review highlights the progress made in exploiting Qdot as fluorophore reporters in MB-based assays with the aim of instigating further development in the field of Qdot-MB technology. The development reported to date indicates that unparalleled fluorescence signal reporting in MB-based assays can be achieved using well-constructed Qdot fluorophores.
Collapse
Affiliation(s)
- Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Enoch Y. Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| |
Collapse
|
18
|
Chang Z, Wang Y, Zheng X. Electrochemiluminescence (ECL) detection of MicroRNAs using polyethylenimine (PEI)/SiO 2 nanoparticles as the indicator. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Pedrero M, Campuzano S, Pingarrón JM. Electrochemical (Bio)sensing of Clinical Markers Using Quantum Dots. ELECTROANAL 2016. [DOI: 10.1002/elan.201600547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- María Pedrero
- Departamento de Química Analítica.; Facultad de Ciencias Químicas.; Universidad Complutense de Madrid. E-; 28040 Madrid Spain
| | - Susana Campuzano
- Departamento de Química Analítica.; Facultad de Ciencias Químicas.; Universidad Complutense de Madrid. E-; 28040 Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica.; Facultad de Ciencias Químicas.; Universidad Complutense de Madrid. E-; 28040 Madrid Spain
| |
Collapse
|
20
|
Li C, Liu Z, Cai S, Wen F, Wu D, Liu Y, Wu F, Lan J, Han Z, Chen J. An electrochemical microRNA biosensor based on protein p19 combining an acridone derivate as indicator and DNA concatamers for signal amplification. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
21
|
Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1636-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Qiu X, Hildebrandt N. Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer. ACS NANO 2015; 9:8449-57. [PMID: 26192765 DOI: 10.1021/acsnano.5b03364] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The detection of next generation microRNA (miRNA) biomarkers has become a highly important aspect for clinical diagnostics. We use multiplexed Förster resonance energy transfer (FRET) between a luminescent Tb complex and three different semiconductor quantum dots (QDs) to sensitively detect three different miRNAs from a single 150 μL sample with ca. 1 nM (subpicomol) detection limits. The rapid and amplification-free mix-and-measure assay format is based on careful design of miRNA base pairing and stacking to selectively detect different miRNAs with very strong sequence homologies. Clinical applicability is demonstrated by sensitive multiplexed quantification of three miRNAs at low (2 to 10 nM) and varying concentrations in samples that contained up to 10% serum.
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institut d'Electronique Fondamentale, Université Paris-Sud/CNRS , 91405 Orsay Cedex, France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institut d'Electronique Fondamentale, Université Paris-Sud/CNRS , 91405 Orsay Cedex, France
| |
Collapse
|
23
|
An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical–chemical–chemical redox cycling. Anal Chim Acta 2015; 878:95-101. [DOI: 10.1016/j.aca.2015.04.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/14/2023]
|
24
|
Shen Q, Han L, Fan G, Zhang JR, Jiang L, Zhu JJ. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension. Anal Chem 2015; 87:4949-56. [PMID: 25871300 DOI: 10.1021/acs.analchem.5b00679] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.
Collapse
Affiliation(s)
- Qingming Shen
- †Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China
| | - Li Han
- †Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China
| | - Gaochao Fan
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jian-Rong Zhang
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Liping Jiang
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jun-Jie Zhu
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
25
|
Goda T, Tabata M, Miyahara Y. Electrical and electrochemical monitoring of nucleic Acid amplification. Front Bioeng Biotechnol 2015; 3:29. [PMID: 25798440 PMCID: PMC4350426 DOI: 10.3389/fbioe.2015.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid amplification is a gold standard technique for analyzing a tiny amount of nucleotides in molecular biology, clinical diagnostics, food safety, and environmental testing. Electrical and electrochemical monitoring of the amplification process draws attention over conventional optical methods because of the amenability toward point-of-care applications as there is a growing demand for nucleic acid sensing in situations outside the laboratory. A number of electrical and electrochemical techniques coupled with various amplification methods including isothermal amplification have been reported in the last 10 years. In this review, we highlight recent developments in the electrical and electrochemical monitoring of nucleic acid amplification.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Miyuki Tabata
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| |
Collapse
|
26
|
Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ. Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2979-2985. [PMID: 25588109 DOI: 10.1021/am508690x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) have emerged as new candidates as diagnostic and prognostic biomarkers for the detection of a wide variety of cancers; thus, sensitive and selective detection of microRNAs is significant for early-phase cancer diagnosis and disease prevention. A novel and simple electrochemical miRNA biosensor was developed using Cd(2+)-modified titanium phosphate nanoparticles as signal unit, two DNA as capture probes, and Ru(NH3)6(3+) as electron transfer mediator. Large quantities of cadmium ions were mounted in titanium phosphate spheres to output the electrochemical signal. Because of the presence of Ru(NH3)6(3+) molecules that interacted with DNA base-pairs as electron wire, the electrochemical signal significantly increased more than 5 times. This approach achieved a wide dynamic linear range from 1.0 aM to 10.0 pM with an ultralow limit detection of 0.76 aM, exerting a substantial enhancement in sensitivity. Moreover, the proposed biosensor was sufficiently selective to discriminate the target miRNAs from homologous miRNAs and could be used for rapid and direct analysis of miRNAs in human serum. Therefore, this strategy provides a new and ultrasensitive platform for miRNA expression profiling in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Fang-Fang Cheng
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | | | | | | | | | | |
Collapse
|
27
|
Conde J, Edelman ER, Artzi N. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics? Adv Drug Deliv Rev 2015; 81:169-83. [PMID: 25220355 DOI: 10.1016/j.addr.2014.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/19/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs) show high potential for cancer treatment, however one of the most significant bottlenecks in enabling miRNA effect is the need for an efficient vehicle capable of selective targeting to tumor cells without disrupting normal cells. Even more challenging is the ability to detect and silence multiple targets simultaneously with high sensitivity while precluding resistance to the therapeutic agents. Focusing on the pervasive role of miRNAs, herein we review the multiple nanomaterial-based systems that encapsulate DNA/RNA for miRNA sensing and inhibition in cancer therapy. Understanding the potential of miRNA detection and silencing while overcoming existing limitations will be critical to the optimization and clinical utilization of this technology.
Collapse
|
28
|
Zhou F, Li B, Ma J. A linear DNA probe as an alternative to a molecular beacon for improving the sensitivity of a homogenous fluorescence biosensing platform for DNA detection using target-primed rolling circle amplification. RSC Adv 2015. [DOI: 10.1039/c4ra14467h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Linear single-labeled DNA probes are used in this RCA-based fluorescence strategy for DNA detection, which could effectively avoid the fluorescence quenching between neighboring signal probes using hairpin probe as signal probe.
Collapse
Affiliation(s)
- Fulin Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jiyuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
29
|
Cheng W, Zhang W, Yan Y, Shen B, Zhu D, Lei P, Ding S. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification. Biosens Bioelectron 2014; 62:274-9. [DOI: 10.1016/j.bios.2014.06.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/23/2022]
|
30
|
Xia N, Zhang L. Nanomaterials-Based Sensing Strategies for Electrochemical Detection of MicroRNAs. MATERIALS 2014; 7:5366-5384. [PMID: 28788133 PMCID: PMC5455827 DOI: 10.3390/ma7075366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/10/2014] [Accepted: 07/14/2014] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) play important functions in post-transcriptional regulation of gene expression. They have been regarded as reliable molecular biomarkers for many diseases including cancer. However, the content of miRNAs in cells can be low down to a few molecules per cell. Thus, highly sensitive analytical methods for miRNAs detection are desired. Recently, electrochemical biosensors have held great promise as devices suitable for point-of-care diagnostics and multiplexed platforms for fast, simple and low-cost nucleic acid analysis. Signal amplification by nanomaterials is one of the most popular strategies for developing ultrasensitive assay methods. This review surveys the latest achievements in the use of nanomaterials to detect miRNAs with a focus on electrochemical techniques.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Liping Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
31
|
Liu W, Zhou X, Xing D. Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescent chip system. Biosens Bioelectron 2014; 58:388-94. [PMID: 24705177 DOI: 10.1016/j.bios.2014.02.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023]
Abstract
MicroRNAs play pivotal roles in many fundamental aspects of life. Because microRNAs have the characteristics of small size, similar sequence, and low abundance, it is challenging to identify microRNAs rapidly and specifically with high sensitivity. Herein, we developed an electrochemiluminescent (ECL) chip system for microRNA detection based on base-stacking hybridization and magnetic microparticle enrichment technology. In the designed system, the integration of the microfluidic system with ECL detection made it easy to assemble the multiple assay steps and allowed the construction of a device that is convenient to carry. A limit of detection of 1fmol was achieved with this assay. The proposed direct optical microRNA detection technique demonstrated an acceptable sensitivity combined with the advantages of reliability and rapidity.
Collapse
Affiliation(s)
- Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
32
|
Jamali AA, Pourhassan-Moghaddam M, Dolatabadi JEN, Omidi Y. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal Biochem 2013; 443:117-23. [DOI: 10.1016/j.ab.2013.08.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/12/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022]
|